Skip to main content
Log in

Threshold Field for Runaway Instability of Bilayer Hard Type-II Superconductor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have solved the problem of the critical state stability of a bilayer type-II superconductor, whose layers have different physical properties (critical current density, specific heat, and critical temperature). We have found the optimal thickness for the outer layer, which results in a maximal increase in the stability threshold—the magnetic field at which the first thermomagnetic avalanche occurs (the jump of the magnetic flux and other physical properties). The calculations were performed for a Nb\(_3\)Sn superconductor coated with a layer of NbTi. It is shown that by choosing the optimum coating thickness, the stability threshold of the magnetic field increases by more than 60 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E.W. Collings, Applied Superconductivity, Metallurgy, and Physics of Titanium Alloys (Plenum Press, New York, 1986)

    Book  Google Scholar 

  2. J. Sutton, J. Appl. Phys. 44, 465 (1973)

    Article  ADS  Google Scholar 

  3. P. Fabricator, M. Greco, C. Ferderghini, C. Bernini, U. Gambardella, G. Celentano, A. Devred, Supercond. Sci. Technol. 20, 34 (2007)

  4. S.V. Vasiliev. O.M. Chumak. V.V. Chabanenko, F. Pérez-Rodríguez, A. Nabiałek, Acta Phys. Pol. A 126, (2014)

  5. T. Takeuchi, A. Kikuchi, N. Banno, H. Kitaguchi, Y. Iijima, K. Tagawa, K. Nakagawa, K. Tsuchiya, C. Mitsuda, N. Koizumi, K. Okuno, Cryogenics 48, 371 (2008)

    Article  ADS  Google Scholar 

  6. C.G. King, D.A. Grey, A. Mantone, B.-X. Xu, IEEE Trans. Appl. Supercond. 7, 1524 (1997)

  7. M.D. Sumption, X. Wu, E. Lee, E.W. Collings, CP711, Advances in Cryogenic Engineering: Transactions of the International Cryogenic Materials Conference - ICMC, Vol. 50, ed. by U. Balachandran. American Institute of Physics 0–7354-0187-X/04/\({\$}\)22.00, p. 844–851 (2004)

  8. L.J. Xiao, S.W. Van Sciver, IEEE Trans. Appl. Supercond. 7, 207 (1997)

    Article  Google Scholar 

  9. E. Burkhard, J. Schwartz, IEEE Trans. Appl. Supercond. 9, 240 (1999)

    Article  Google Scholar 

  10. R.B. Goldfarb, L.F. Goodrich, T. Pyon, E. Gregory, IEEE Trans. Appl. Supercond. 11, 3679 (2001)

    Article  Google Scholar 

  11. R.G. Mints, A.L. Rakhmanov, Rev. Mod. Phys. 53, 551 (1981)

    Article  ADS  Google Scholar 

  12. J.I. Vestgården, Y.M. Galperin, T.H. Johansen, J. Low Temp. Phys. 173, 303 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by SEP-CONACYT (Mexico) under Grant CB-2012-01-183673.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Chabanenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumak, O.M., Chabanenko, V.V., Rusakov, V.F. et al. Threshold Field for Runaway Instability of Bilayer Hard Type-II Superconductor. J Low Temp Phys 179, 75–82 (2015). https://doi.org/10.1007/s10909-014-1230-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1230-5

Keywords

Navigation