Journal of Low Temperature Physics

, Volume 179, Issue 1–2, pp 75–82 | Cite as

Threshold Field for Runaway Instability of Bilayer Hard Type-II Superconductor

  • O. M. Chumak
  • V. V. Chabanenko
  • V. F. Rusakov
  • S. V. Vasiliev
  • F. Pérez-Rodríguez
  • A. Nabiałek


We have solved the problem of the critical state stability of a bilayer type-II superconductor, whose layers have different physical properties (critical current density, specific heat, and critical temperature). We have found the optimal thickness for the outer layer, which results in a maximal increase in the stability threshold—the magnetic field at which the first thermomagnetic avalanche occurs (the jump of the magnetic flux and other physical properties). The calculations were performed for a Nb\(_3\)Sn superconductor coated with a layer of NbTi. It is shown that by choosing the optimum coating thickness, the stability threshold of the magnetic field increases by more than 60 %.


Hard superconductors type II Critical state stability Bilayer superconductor Thermomagnetic avalanches Magnetic field of instability 



This work was partially supported by SEP-CONACYT (Mexico) under Grant CB-2012-01-183673.


  1. 1.
    E.W. Collings, Applied Superconductivity, Metallurgy, and Physics of Titanium Alloys (Plenum Press, New York, 1986)CrossRefGoogle Scholar
  2. 2.
    J. Sutton, J. Appl. Phys. 44, 465 (1973)CrossRefADSGoogle Scholar
  3. 3.
    P. Fabricator, M. Greco, C. Ferderghini, C. Bernini, U. Gambardella, G. Celentano, A. Devred, Supercond. Sci. Technol. 20, 34 (2007)Google Scholar
  4. 4.
    S.V. Vasiliev. O.M. Chumak. V.V. Chabanenko, F. Pérez-Rodríguez, A. Nabiałek, Acta Phys. Pol. A 126, (2014)Google Scholar
  5. 5.
    T. Takeuchi, A. Kikuchi, N. Banno, H. Kitaguchi, Y. Iijima, K. Tagawa, K. Nakagawa, K. Tsuchiya, C. Mitsuda, N. Koizumi, K. Okuno, Cryogenics 48, 371 (2008)CrossRefADSGoogle Scholar
  6. 6.
    C.G. King, D.A. Grey, A. Mantone, B.-X. Xu, IEEE Trans. Appl. Supercond. 7, 1524 (1997)Google Scholar
  7. 7.
    M.D. Sumption, X. Wu, E. Lee, E.W. Collings, CP711, Advances in Cryogenic Engineering: Transactions of the International Cryogenic Materials Conference - ICMC, Vol. 50, ed. by U. Balachandran. American Institute of Physics 0–7354-0187-X/04/\({\$}\)22.00, p. 844–851 (2004)Google Scholar
  8. 8.
    L.J. Xiao, S.W. Van Sciver, IEEE Trans. Appl. Supercond. 7, 207 (1997)CrossRefGoogle Scholar
  9. 9.
    E. Burkhard, J. Schwartz, IEEE Trans. Appl. Supercond. 9, 240 (1999)CrossRefGoogle Scholar
  10. 10.
    R.B. Goldfarb, L.F. Goodrich, T. Pyon, E. Gregory, IEEE Trans. Appl. Supercond. 11, 3679 (2001)CrossRefGoogle Scholar
  11. 11.
    R.G. Mints, A.L. Rakhmanov, Rev. Mod. Phys. 53, 551 (1981)CrossRefADSGoogle Scholar
  12. 12.
    J.I. Vestgården, Y.M. Galperin, T.H. Johansen, J. Low Temp. Phys. 173, 303 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • O. M. Chumak
    • 1
  • V. V. Chabanenko
    • 1
    • 3
  • V. F. Rusakov
    • 2
  • S. V. Vasiliev
    • 1
  • F. Pérez-Rodríguez
    • 3
  • A. Nabiałek
    • 4
  1. 1.A. Galkin Donetsk Institute for Physics and EngineeringNASUDonetskUkraine
  2. 2.Donetsk National UniversityDonetskUkraine
  3. 3.Instituto de FisicaBenemérita Universidad Autónoma de PueblaPueblaMexico
  4. 4.Institute of PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations