Journal of Low Temperature Physics

, Volume 178, Issue 1–2, pp 53–60 | Cite as

Spin Relaxation of an Impurity Polaron in a Parabolic Quantum Dot

  • Zhi-Xin Li


We have studied theoretically the spin relaxation of an impurity polaron, which arises from the electron interactions with the longitudinal optical phonon between the sublevel Zeeman splitting of the ground-state, by employing a variational method for a parabolic quantum dot (QD). In fact, this process occurs by the absorption of a deformation potential acoustic phonon. With Rashba spin-orbit coupling, the expression of the spin relaxation rate of an impurity polaron as functions of the radius of QD, the Lande factor parameter, the magnetic field adjusting length has been derived. Results of the numerical calculation show that the spin relaxation rate decreases with increasing the radius of QD and enlarges with increasing the magnetic field adjusting length when the magnetic field adjusting length \(R_{b} <0.7r_{0}\). In addition, we find that the spin relaxation rate is an increasing function of the Lande factor parameter.


Spin relaxation Parabolic quantum dot Impurity polaron 


  1. 1.
    B.E. Kane, Nature 393, 133 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    C.H. Bennett, Phys. Today 48, 24 (1995)CrossRefGoogle Scholar
  3. 3.
    D. Loss, D.P. Divincenzo, Phys. Rev. A 57, 120 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    J. Fabian, U. Hohenester, Phys. Rev. B 72, 201304 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    A. Bavenco, Contemp. Phys. 37, 375 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    E.L. Ivchenko, G. Pikus, Superlattices and Other Microstructures (Springer, Berlin, 1995)CrossRefGoogle Scholar
  7. 7.
    Martin Raith, Peter Stano, Fabio Baruffa, Taroslav Fabian, Phys. Rev. Lett. 108, 246602 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    M. Paillard, X. Marie, P. Renucci, T. Amand, A. Jbeli, J.M. Gerard, Phys. Rev. Lett. 86, 1634 (2001)Google Scholar
  9. 9.
    L.M. Woods, T.L. Reinecke, Y. Lyanda-Geller, Phys. Rev. B 66, 161318 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    A.M. Alcalde, G.E. Marques, Braz. J. Phys. 34, 705 (2004)CrossRefGoogle Scholar
  11. 11.
    Z.W. Wang, W.P. Li, J.W. Yin, J.L. Xiao, Commun. Theory Phys. 49, 31 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    W.P. Li, J.W. Yin, Y.F. Yu, J.L. Xiao, Mod. Phys. Lett. B 25, 1 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    L.D. Landau, S.I. Pekar, Zh. Eksp. Teor. Fiz. 16, 341 (1946)Google Scholar
  14. 14.
    S.I. Pekar, Untersuchungen über die Elektronen-Theorie der Kristalle (Akademie Verlag, Berlin, 1954)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of Physics and ChemistryHebei Normal University of Science and TechnologyQinhuangdaoChina

Personalised recommendations