Advertisement

Journal of Low Temperature Physics

, Volume 177, Issue 1–2, pp 48–58 | Cite as

Half-Quantum Vortices in Polar Phase of Superfluid \(^{3}\)He

  • V. P. Mineev
Article

Abstract

The magnetic dipole-dipole interaction does not prevent existence of half-quantum vortices in the polar phase of superfluid \(^{3}\)He which can be stable in uniaxial anisotropic aerogel. Here we discuss this exotic possibility. After developing a phenomenological theory of phase transition from the normal to the polar superfluid state and then to axipolar superfluid state we calculate the NMR properties of such type superfluids at the rest or under rotation when liquid is filled by an array either single quantum or half quantum vortices.

Keywords

Superfluid He-3 in aerogel Phase diagram NMR properties 

Notes

Acknowledgments

I am indebted to V.V. Dmitriev for useful discussions and numerous helpful remarks in process of the manuscript preparation.

References

  1. 1.
    G.E. Volovik, V.P. Mineev, Pis’ma Zh. Exp. Teor. Fiz. 24, 605 (1976)Google Scholar
  2. 2.
    G.E. Volovik, V.P. Mineev, JETP Lett. 24, 561 (1976)ADSGoogle Scholar
  3. 3.
    N.D. Mermin, T.-L. Ho, Phys. Rev. Lett. 36, 594 (1976)ADSCrossRefGoogle Scholar
  4. 4.
    G.E. Volovik, N.B. Kopnin, Pis’ma Zh. Eksp. Teor. Fiz. 25, 26 (1977)Google Scholar
  5. 5.
    G.E. Volovik, N.B. Kopnin, JETP Lett. 25, 22 (1977)ADSGoogle Scholar
  6. 6.
    M.M. Salomaa, G.E. Volovik, Rev. Mod. Phys. 59, 533 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    O.V. Lounasmaa, E. Thuneberg, Proc. Natl. Acad. Sci 96, 7760 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    J. Jang, D.G. Ferguson, V. Vakaryuk, R. Budakian, S.B. Chung, P.M. Goldbart, Y. Maeno, Science 331, 186 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    K.G. Lagourdakis, T. Ostatnicky, A.V. Kavokin, Y.G. Rubo, R. Andre, B. Deveaud-Pledran, Science 326, 974 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    V.P. Mineev, Usp. Fiz. Nauk. 139, 303 (1983)CrossRefGoogle Scholar
  11. 11.
    V.P. Mineev, Sov. Phys. Uspekhi 26, 160 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    G.E. Volovik, V.P. Mineev, Zh Exp, Teor. Fiz. 72, 2256 (1977)Google Scholar
  13. 13.
    G.E. Volovik, V.P. Mineev, Sov. Phys. JETP 45, 1186 (1977)ADSMathSciNetGoogle Scholar
  14. 14.
    V.P. Mineev, Topologically Stable Dedects and Solitons in Ordered Media, 6th edn. (Harwood Academic Publishers, Amsterdam, 1998)Google Scholar
  15. 15.
    G.E. Volovik, M.M. Salomaa, Zh Eksp, Teor. Fiz. 88, 1656 (1985)Google Scholar
  16. 16.
    G.E. Volovik, M.M. Salomaa, Sov. Phys. JETP 61, 986 (1985)Google Scholar
  17. 17.
    M.M. Salomaa, G.E. Volovik, Phys. Rev. Lett. 55, 1184 (1985)Google Scholar
  18. 18.
    R.Sh. Askhadullin, V.V. Dmitriev, D.A. Krasnikhin, P.N. Martynov, A.A. Osipov, A.A. Senin, A.N. Yudin, Pisma v ZhETF 95, 355 (2012)Google Scholar
  19. 19.
    R.Sh. Askhadullin, V.V. Dmitriev, D.A. Krasnikhin, P.N. Martynov, A.A. Osipov, A.A. Senin, A.N. Yudin, JETP Lett. 95, 326 (2012)Google Scholar
  20. 20.
    V.P. Mineev, Low Temp. Phys. 39, 1056 (2013)CrossRefGoogle Scholar
  21. 21.
    K. Aoyama, R. Ikeda, Phys. Rev. B 73, 060504 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    E.V. Thuneberg, S.K. Yip, M. Fogelstrom, J.A. Sauls, Phys. Rev. Lett. 80, 2861 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    I.A. Fomin, Zh Eksp, Teor. Fiz. 71, 791 (1976)Google Scholar
  24. 24.
    I.A. Fomin, Sov. Phys. JETP 44, 416 (1976)ADSGoogle Scholar
  25. 25.
    A.D. Gongadze, G.E. Gurgenishvili, G.A. Kharadze, Zh Eksp, Teor. Phys. 78, 615 (1980)Google Scholar
  26. 26.
    A.D. Gongadze, G.E. Gurgenishvili, G.A. Kharadze, Sov. Phys. JETP 51, 310 (1980)ADSGoogle Scholar
  27. 27.
    H. Choi, J.P. Davis, J. Pollanen, T.M. Haard, W.P. Halperin, Phys. Rev. B 75, 174503 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Commissariat a l’Energie AtomiqueINAC/SPSMSGrenobleFrance

Personalised recommendations