Skip to main content
Log in

MicroSQUID Force Microscopy in a Dilution Refrigerator

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present a new generation of a scanning microSQUID microscope operating in an inverted dilution refrigerator. The microSQUIDs have a size of 1.21\( \ \upmu \)m\(^{2}\) and a magnetic flux sensitivity of 120 \(\upmu \Phi _{0} / \sqrt{\text {Hz}}\) and thus a field sensitivity of 550\( \ \upmu \text {G}/ \sqrt{\text {Hz}}\). The scan range at low temperatures is about 80 \(\upmu \)m and a coarse displacement of 5 mm in x and y direction has been implemented. The microSQUID-to-sample distance is regulated using a tuning fork based force detection. A microSQUID-to-sample distance of 420 nm has been obtained. The reliable knowledge of this distance is necessary to obtain a trustworthy estimate of the absolute value of the superconducting penetration depth. An outlook will be given on the ongoing direction of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Kirtley, Rep. Prog. Phys. 73, 126501 (2010)

    Article  ADS  Google Scholar 

  2. O. Auslaender, L. Luan, E. Straver, J. Hoffman, N. Koshnick, E. Zeldov, D. Bonn, R. Liang, W. Hardy, K. Moler, Nat. Phys. Lett. 5, 35 (2009)

    Article  Google Scholar 

  3. S. Bending, Physica C 470, 754–757 (2010)

    Article  ADS  Google Scholar 

  4. T. Nishio, Q. Chen, W. Gillijns, K. de Keyser, K. Vervaeke, K. Vervaeke, V. Moshchalkov, Phys. Rev. B 77, 012502 (2008)

    Article  ADS  Google Scholar 

  5. J. Kirtley, J. Wikswo, Annu. Rev. Mater. Sci. 29, 117 (1999)

    Article  ADS  Google Scholar 

  6. N. Koshnick, M. Huber, J. Bert, C. Hicks, J. Large, H. Edwards, K. Moler, Appl. Phys. Lett. 93, 243101 (2008)

    Article  ADS  Google Scholar 

  7. J.R. Kirtley, C.C. Tsuei, K.A. Moler, V.G. Kogan, J.R. Clem, A.J. Turberfield, Appl. Phys. Lett. 74, 4011 (1999)

    Article  ADS  Google Scholar 

  8. A. Finkler, Y. Segev, Y. Myasoedov, M. Rappaport, L. Ne’eman, D. Vasyukov, E. Zeldov, M. Huber, J. Martin, A. Yacoby, Nano Lett. 10, 1046 (2010)

    Article  ADS  Google Scholar 

  9. D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens, L. Neeman, A. Finkler, Y. Segev, Y. Myasoedov, M.L. Rappaport, M.E. Huber, E. Zeldov, Nat. Nanotechnol. 8, 639–644 (2013)

    Article  ADS  Google Scholar 

  10. A. Finkler, D. Vasyukov, Y. Segev, L. Neeman, Y. Anahory, Y. Myasoedov, M.L. Rappaport, M.E. Huber, J. Martin, A. Yacoby, E. Zeldov, J. Phys. 400, 052004 (2012)

    Google Scholar 

  11. K. Hasselbach, C. Ladam, V.O. Dolocan, D. Hykel, T. Crozes, K. Schuster, D. Mailly, J. Phys. 97(1), 012330 (2008)

    Google Scholar 

  12. C. Veauvy, K. Hasselbach, Rev. Sci. Instrum. 73, 3825 (2002)

    Article  ADS  Google Scholar 

  13. D.J. Hykel, PhD thesis, Université Joseph Fourier Grenoble 1, 2011

  14. Z.S. Wang, PhD thesis, Université Joseph Fourier Grenoble 1 and Institute of Physics/CAS Beijing China, 2012

  15. W. Wernsdorfer, G. Donnier-Valentin, A. Benoit, Institut Néel CNRS, http://www.neel.cnrs.fr/spip.php?article3406: inverted dilution refrigerator

  16. J. Siegel, J. Witt, N. Venturi, S. Field, Rev. Sci. Instrum. 66, 2520 (1995)

    Article  ADS  Google Scholar 

  17. Signal Recovery Ametek: Model 7280

  18. Physik Instrumente GmbH and Co. KG: P-885.51

  19. Attocube Systems AG: ANPx101

  20. Sheldon Instruments: SI-C6713DSP-PC104p

  21. V.G. Kogan, Phys. Rev. B. 68, 104511 (2003)

    Article  ADS  Google Scholar 

  22. L. Hao, J.C. Macfarlane, J.C. Gallop, D. Cox, J. Beyer, D. Drung, T. Schurig, Appl. Phys. Lett. 92, 192507 (2008)

    Article  ADS  Google Scholar 

  23. J.P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarcuhu, M. Monthioux, Nat. Nanotechnol. 1, 53–59 (2006)

    Article  ADS  Google Scholar 

  24. R. Wolbing, T. Schwarz, J. Nagel, M. Kemmler, D. Koelle, R. Kleiner (2013) http://arxiv.org/abs/arxiv.orgp.1301.1189v1

  25. C. Paulsen, D.J. Hykel, K. Hasselbach, D. Aoki, Phys. Rev. Lett. 109, 237001 (2012)

    Article  ADS  Google Scholar 

  26. D. Hazra, J.R. Kirtley, K. Hasselbach, Appl. Phys. Lett. 103, 93109 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

P. C. and K. H. acknowledge support in the framework of MICROKELVIN, the EU FRP7 low-temperature infrastructure under Grant No. 228464. Z. S. W. acknowledges thankfully the support of the French Embassy in Beijing and the CROUS. This work has been supported by the French National Research Agency, Grant No. ANR-09-Blanc-0211 SupraTetrafer and ANR- 09-BLAN-0146 SINUS. W. Wernsdorfer and E. Eyraud are thanked for their advice and help during the cryogenic developments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hasselbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hykel, D.J., Wang, Z.S., Castellazzi, P. et al. MicroSQUID Force Microscopy in a Dilution Refrigerator. J Low Temp Phys 175, 861–867 (2014). https://doi.org/10.1007/s10909-014-1174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1174-9

Keywords

Navigation