Journal of Low Temperature Physics

, Volume 175, Issue 5–6, pp 861–867 | Cite as

MicroSQUID Force Microscopy in a Dilution Refrigerator

  • D. J. Hykel
  • Z. S. Wang
  • P. Castellazzi
  • T. Crozes
  • G. Shaw
  • K. Schuster
  • K. Hasselbach


We present a new generation of a scanning microSQUID microscope operating in an inverted dilution refrigerator. The microSQUIDs have a size of 1.21\( \ \upmu \)m\(^{2}\) and a magnetic flux sensitivity of 120 \(\upmu \Phi _{0} / \sqrt{\text {Hz}}\) and thus a field sensitivity of 550\( \ \upmu \text {G}/ \sqrt{\text {Hz}}\). The scan range at low temperatures is about 80 \(\upmu \)m and a coarse displacement of 5 mm in x and y direction has been implemented. The microSQUID-to-sample distance is regulated using a tuning fork based force detection. A microSQUID-to-sample distance of 420 nm has been obtained. The reliable knowledge of this distance is necessary to obtain a trustworthy estimate of the absolute value of the superconducting penetration depth. An outlook will be given on the ongoing direction of development.


SQUID Scanning microscopy Superconductivty 



P. C. and K. H. acknowledge support in the framework of MICROKELVIN, the EU FRP7 low-temperature infrastructure under Grant No. 228464. Z. S. W. acknowledges thankfully the support of the French Embassy in Beijing and the CROUS. This work has been supported by the French National Research Agency, Grant No. ANR-09-Blanc-0211 SupraTetrafer and ANR- 09-BLAN-0146 SINUS. W. Wernsdorfer and E. Eyraud are thanked for their advice and help during the cryogenic developments.


  1. 1.
    J. Kirtley, Rep. Prog. Phys. 73, 126501 (2010)CrossRefADSGoogle Scholar
  2. 2.
    O. Auslaender, L. Luan, E. Straver, J. Hoffman, N. Koshnick, E. Zeldov, D. Bonn, R. Liang, W. Hardy, K. Moler, Nat. Phys. Lett. 5, 35 (2009)CrossRefGoogle Scholar
  3. 3.
    S. Bending, Physica C 470, 754–757 (2010)CrossRefADSGoogle Scholar
  4. 4.
    T. Nishio, Q. Chen, W. Gillijns, K. de Keyser, K. Vervaeke, K. Vervaeke, V. Moshchalkov, Phys. Rev. B 77, 012502 (2008)CrossRefADSGoogle Scholar
  5. 5.
    J. Kirtley, J. Wikswo, Annu. Rev. Mater. Sci. 29, 117 (1999)CrossRefADSGoogle Scholar
  6. 6.
    N. Koshnick, M. Huber, J. Bert, C. Hicks, J. Large, H. Edwards, K. Moler, Appl. Phys. Lett. 93, 243101 (2008)CrossRefADSGoogle Scholar
  7. 7.
    J.R. Kirtley, C.C. Tsuei, K.A. Moler, V.G. Kogan, J.R. Clem, A.J. Turberfield, Appl. Phys. Lett. 74, 4011 (1999)CrossRefADSGoogle Scholar
  8. 8.
    A. Finkler, Y. Segev, Y. Myasoedov, M. Rappaport, L. Ne’eman, D. Vasyukov, E. Zeldov, M. Huber, J. Martin, A. Yacoby, Nano Lett. 10, 1046 (2010)CrossRefADSGoogle Scholar
  9. 9.
    D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens, L. Neeman, A. Finkler, Y. Segev, Y. Myasoedov, M.L. Rappaport, M.E. Huber, E. Zeldov, Nat. Nanotechnol. 8, 639–644 (2013)CrossRefADSGoogle Scholar
  10. 10.
    A. Finkler, D. Vasyukov, Y. Segev, L. Neeman, Y. Anahory, Y. Myasoedov, M.L. Rappaport, M.E. Huber, J. Martin, A. Yacoby, E. Zeldov, J. Phys. 400, 052004 (2012)Google Scholar
  11. 11.
    K. Hasselbach, C. Ladam, V.O. Dolocan, D. Hykel, T. Crozes, K. Schuster, D. Mailly, J. Phys. 97(1), 012330 (2008)Google Scholar
  12. 12.
    C. Veauvy, K. Hasselbach, Rev. Sci. Instrum. 73, 3825 (2002)CrossRefADSGoogle Scholar
  13. 13.
    D.J. Hykel, PhD thesis, Université Joseph Fourier Grenoble 1, 2011Google Scholar
  14. 14.
    Z.S. Wang, PhD thesis, Université Joseph Fourier Grenoble 1 and Institute of Physics/CAS Beijing China, 2012Google Scholar
  15. 15.
    W. Wernsdorfer, G. Donnier-Valentin, A. Benoit, Institut Néel CNRS, inverted dilution refrigerator
  16. 16.
    J. Siegel, J. Witt, N. Venturi, S. Field, Rev. Sci. Instrum. 66, 2520 (1995)CrossRefADSGoogle Scholar
  17. 17.
    Signal Recovery Ametek: Model 7280Google Scholar
  18. 18.
    Physik Instrumente GmbH and Co. KG: P-885.51Google Scholar
  19. 19.
    Attocube Systems AG: ANPx101Google Scholar
  20. 20.
    Sheldon Instruments: SI-C6713DSP-PC104pGoogle Scholar
  21. 21.
    V.G. Kogan, Phys. Rev. B. 68, 104511 (2003)CrossRefADSGoogle Scholar
  22. 22.
    L. Hao, J.C. Macfarlane, J.C. Gallop, D. Cox, J. Beyer, D. Drung, T. Schurig, Appl. Phys. Lett. 92, 192507 (2008)CrossRefADSGoogle Scholar
  23. 23.
    J.P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarcuhu, M. Monthioux, Nat. Nanotechnol. 1, 53–59 (2006)CrossRefADSGoogle Scholar
  24. 24.
    R. Wolbing, T. Schwarz, J. Nagel, M. Kemmler, D. Koelle, R. Kleiner (2013)
  25. 25.
    C. Paulsen, D.J. Hykel, K. Hasselbach, D. Aoki, Phys. Rev. Lett. 109, 237001 (2012)CrossRefADSGoogle Scholar
  26. 26.
    D. Hazra, J.R. Kirtley, K. Hasselbach, Appl. Phys. Lett. 103, 93109 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • D. J. Hykel
    • 1
  • Z. S. Wang
    • 1
    • 2
  • P. Castellazzi
    • 1
  • T. Crozes
    • 1
  • G. Shaw
    • 1
  • K. Schuster
    • 3
  • K. Hasselbach
    • 1
  1. 1.CNRSInstitut Néel, Université Grenoble AlpesGrenobleFrance
  2. 2.Beijing National Laboratory for Condensed Matter PhysicsInstitute of Physics, Chinese Academy of ScienceBeijingChina
  3. 3.Institut de Radioastronomie Millimétrique, Domaine UniversitaireSaint Martin d’HèresFrance

Personalised recommendations