Advertisement

Journal of Low Temperature Physics

, Volume 176, Issue 5–6, pp 979–985 | Cite as

Thermal Properties of Holmium-Implanted Gold Films

  • K. Prasai
  • E. Alves
  • D. Bagliani
  • S. Basak Yanardag
  • M. Biasotti
  • M. Galeazzi
  • F. Gatti
  • M. Ribeiro Gomes
  • J. Rocha
  • Y. Uprety
Article

Abstract

The effective mass of the electron neutrino can be probed by studying the \(^{163}\)Ho electron capture decay with cryogenic microcalorimeters. The goal is to perform a calorimetric experiment, where all the energy released in the decay is measured except for the kinetic energy of the neutrino. To achieve such a goal, multiple approaches are being investigated to enclose the radioactive source in a microcalorimeter absorber without affecting the thermal properties of the absorber material. One such approach is to implant the radioactive isotope into a gold absorber, as gold is successfully used in similar applications. We measured the heat capacity of gold films, implanted with various concentrations of holmium and erbium (a byproduct of the \(^{163}\)Ho fabrication), in the temperature range 70–300 mK. Our results show that the specific heat capacity of the films is not affected by the implant, making this a viable option for a future experiment. We also verified that the implant does not affect the crystal structure of the gold film.

Keywords

Holmium-163 Neutrino mass Cryogenic microcalorimeter  Heat capacity 

References

  1. 1.
    K.N. Abazajian et al., Astropart. Phys. 35, 4 (2011)CrossRefGoogle Scholar
  2. 2.
    C. Kraus et al., Eur. Phys. J. C 40, 447 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    V.M. Lobashev, Nucl. Phys. A 719, 153c (2003)ADSCrossRefGoogle Scholar
  4. 4.
    KATRIN Collaboration, arXiv:hep-ex/0109033 (2001).
  5. 5.
    M. Sisti et al., Nucl. Inst. Meth. A 52, 1250 (2004)Google Scholar
  6. 6.
    J.A. Formaggio, Nucl. Phys. B 229, 371 (2012)CrossRefGoogle Scholar
  7. 7.
    C.O. Ranitzsch et al., J. Low Temp. Phys. 167, 1004 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    C.L. Bennett et al., Phys. Lett. B 107, 19 (1981)ADSCrossRefGoogle Scholar
  9. 9.
    A. De Rújula, Nucl. Phys. B 188, 414 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    B. Jonson et al., Nucl. Phys. A 396, 479 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    A. De Rújula, M. Lusignoli, Phys. Lett. B 118, 429 (1982)ADSCrossRefGoogle Scholar
  12. 12.
    F. Gatti et al., Phys. Lett. B 398, 415 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    F. Gatti et al., J. Low Temp. Phys. 151, 603 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    M. Galeazzi, et al., arXiv:1202.4763 (2012).
  15. 15.
    B.L. Rhodes et al., Phys. Rev. 109, 5 (1958)CrossRefGoogle Scholar
  16. 16.
    A.P. Murani, J. Phys. C: Metal Phys. Suppl., No. 2 (1970).Google Scholar
  17. 17.
    B. Bleaney, Proc. R. Soc. Lond. A 424, 299–306 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    K. Prasai, et al., Rev. Sci. Instr., in press (2013).Google Scholar
  19. 19.
    M. Galeazzi, D. McCammon, J. Appl. Phys. 93, 4856 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Handbook of Chemistry and Physics, 60th edn. ed. by R.C. Weast (CRC, Boca Raton, 1979)Google Scholar
  21. 21.
    B.D. Cullity, Elements of X-ray Diffraction 2nd edn. Chap. 3, p. 102Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • K. Prasai
    • 1
  • E. Alves
    • 2
  • D. Bagliani
    • 3
  • S. Basak Yanardag
    • 1
  • M. Biasotti
    • 3
  • M. Galeazzi
    • 1
  • F. Gatti
    • 3
  • M. Ribeiro Gomes
    • 4
  • J. Rocha
    • 2
  • Y. Uprety
    • 1
  1. 1.Department of PhysicsUniversity of MiamiCoral GablesU.S.A.
  2. 2.Centre for Nuclear PhysicsUniversity of Lisbon and IST-IDLisbonPortugal
  3. 3.Department of PhysicsUniversity of Genova & INFN GenovaGenovaItaly
  4. 4.Centre for Nuclear PhysicsUniversity of LisbonLisbonPortugal

Personalised recommendations