Advertisement

Journal of Low Temperature Physics

, Volume 175, Issue 5–6, pp 764–775 | Cite as

Current Sensing Noise Thermometry: A Fast Practical Solution to Low Temperature Measurement

  • A. Casey
  • F. Arnold
  • L. V. Levitin
  • C. P. Lusher
  • J. Nyéki
  • J. Saunders
  • A. Shibahara
  • H. van der Vliet
  • B. Yager
  • D. Drung
  • Th. Schurig
  • G. Batey
  • M. N. Cuthbert
  • A. J. Matthews
Article

Abstract

We describe the design and performance of a series of fast, precise current sensing noise thermometers. The thermometers have been fabricated with a range of resistances from 1.290 \(\Omega \) down to 0.2 m\(\Omega \). This results in either a thermometer that has been optimised for speed, taking advantage of the improvements in superconducting quantum interference device noise and bandwidth, or a thermometer optimised for ultra-low temperature measurement, minimising the system noise temperature. With a single temperature calibration point, we show that noise thermometers can be used for accurate measurements over a wide range of temperatures below 4 K. Comparisons with a melting curve thermometer, a calibrated germanium thermometer and a pulsed platinum nuclear magnetic resonance thermometer are presented. For the 1.290 \(\Omega \) resistance we measure a 1 % precision in just 100 ms, and have shown this to be independent of temperature.

Keywords

Johnson noise Fixed point device Precision SQUID 

Notes

Acknowledgments

This work was supported by the European Metrology Research Program (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. Additional support was through the MICROKELVIN project. We acknowledge the support of the European Community - Research Infrastructures under the FP7 Capacities Specific Programme, MICROKELVIN project number 228464.

References

  1. 1.
    G. Batey, A. Casey, M.N. Cuthbert, A.J. Matthews, J. Saunders, A. Shibahara, New J. Phys. 15, 113034 (2013)CrossRefADSGoogle Scholar
  2. 2.
    O.V. Lounasmaa, Experimental principles and methods below 1 K (Academic Press, London, 1974)Google Scholar
  3. 3.
    C. Enss, S. Hunklinger, Low Temperature Physics (Springer, Berlin, 2005)Google Scholar
  4. 4.
    F. Pobell, Matter an Methods at Low Temperatures (Springer, Oxford, 2007)CrossRefGoogle Scholar
  5. 5.
    BIPM, Procès-Verbaux des Séances du Comité International des Poids et Mesures 68, 128 (2001).Google Scholar
  6. 6.
    R.L. Rusby, M. Durieux, A.L. Reesink, R.P. Hudson, G. Schuster, M. Kühne, W.E. Fogle, R.J. Soulen, D.E. Adams, J. Low Temp. Phys. 126, 633 (2002)CrossRefADSGoogle Scholar
  7. 7.
    C.P. Lusher, V.A. Junyun Li, M.E. Maidanov, H. Digby, A. Dyball, J. Casey, V.V. Nyéki, B.P. Dmitriev, J.Saunders Cowan, Meas. Sci. Technol. 12, 1 (2001)CrossRefADSGoogle Scholar
  8. 8.
    T. Varpula, H. Seppä, Rev. Sci. Instrum. 64(6), 1593 (1993)CrossRefADSGoogle Scholar
  9. 9.
    J. Beyer, D. Drung, A. Kirste, J. Engert, A. Netsch, A. Fleischmann, C. Enss, IEEE Trans. Appl. Supercond. 17, 2 (2007)CrossRefGoogle Scholar
  10. 10.
    J. Engert, J. Beyer, D. Drung, A. Kirste, D. Heyer, A. Fleischmann, C. Enss, H.-J. Barthelmess, J. Phys. C 150, 12012 (2009)Google Scholar
  11. 11.
    D. Rothfuß, A. Reiser, A. Fleischmann, C. Enss, Appl. Phys. Lett. 103, 052605 (2013)CrossRefADSGoogle Scholar
  12. 12.
    J.P. Pekola, K.P. Hirvi, J.P. Kauppinen, M.A. Paalanen, Phys. Rev. Lett. 73, 2903 (1994)CrossRefADSGoogle Scholar
  13. 13.
    R.P. Giffard, R.A. Webb, J.C. Wheatley, J. Low Temp. Phys. 6, 533–610 (1972)CrossRefADSGoogle Scholar
  14. 14.
    R.A. Webb, R.P. Giffard, J.C. Wheatley, J. Low Temp. Phys. 13, 383–429 (1973)CrossRefADSGoogle Scholar
  15. 15.
    R.A. Webb, S. Washburn, AIP. Conf. Proc. 103, 453–466 (1983)CrossRefADSGoogle Scholar
  16. 16.
    J.B. Johnson, Phys. Rev. 32, 97 (1928)CrossRefADSGoogle Scholar
  17. 17.
    D. Drung, C. Aßmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, Th Schurig, IEEE Trans. Appl. Supercond. 17, 699 (2007)CrossRefADSGoogle Scholar
  18. 18.
    Quantum Design, Inc., 6325 Lusk Boulevard, San Diego, CA 92121, USA. http://www.qdusa.com
  19. 19.
    A. Casey, B.P. Cowan, H. Dyball, J. Li, C.P. Lusher, V. Maidanov, J. Nyéki, J. Saunders, Dm Shvarts, Physics of Condensed Matter. Phys. B 329–333, 1556 (2003)CrossRefGoogle Scholar
  20. 20.
    Goodfellow Cambridge Ltd, Ermine Business Park, Huntingdon, England PE29 6WR. http://www.Goodfellow.com
  21. 21.
    W.F. Giauque, D.N. Lyon, E.W. Hornung, T.E. Hopkins, J. Chem. Phys. 37, 1446 (1962)CrossRefADSGoogle Scholar
  22. 22.
    G.S. Cieloszyk, P.J. Cote, G.L. Salinger, J.C. Williams, Rev. Sci. Instrum. 46, 1182 (1975)CrossRefADSGoogle Scholar
  23. 23.
    Magnicon GmbH, Lemsahler Landstr. 171, Hamburg, Germany. http://www.Magnicon.com
  24. 24.
    National Instruments Corporation, 1105 N Mopac Expressway, Austin, TX 78759–3504, USA. http://www.ni.com
  25. 25.
    J.G.C. Milne, Phys. Rev. 122, 387–388 (1961)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Casey
    • 1
  • F. Arnold
    • 1
  • L. V. Levitin
    • 1
  • C. P. Lusher
    • 1
  • J. Nyéki
    • 1
  • J. Saunders
    • 1
  • A. Shibahara
    • 1
  • H. van der Vliet
    • 1
  • B. Yager
    • 1
  • D. Drung
    • 2
  • Th. Schurig
    • 2
  • G. Batey
    • 3
  • M. N. Cuthbert
    • 3
  • A. J. Matthews
    • 3
  1. 1.Department of PhysicsRoyal Holloway University of LondonSurrey UK
  2. 2.Physikalisch-Technische BundesanstaltBerlinGermany
  3. 3.Oxford Instruments Omicron NanoscienceOxon UK

Personalised recommendations