Advertisement

Journal of Low Temperature Physics

, Volume 176, Issue 5–6, pp 670–676 | Cite as

Horn Coupled Multichroic Polarimeters for the Atacama Cosmology Telescope Polarization Experiment

  • R. Datta
  • J. Hubmayr
  • C. Munson
  • J. Austermann
  • J. Beall
  • D. Becker
  • H. M. Cho
  • N. Halverson
  • G. Hilton
  • K. Irwin
  • D. Li
  • J. McMahon
  • L. Newburgh
  • J. Nibarger
  • M. Niemack
  • B. Schmitt
  • H. Smith
  • S. Staggs
  • J. Van Lanen
  • E. Wollack
Article

Abstract

Multichroic polarization sensitive detectors enable increased sensitivity and spectral coverage for observations of the cosmic microwave background. An array optimized for dual frequency detectors can provide 1.7 times gain in sensitivity compared to a single frequency array. We present the design and measurements of horn coupled multichroic polarimeters encompassing the 90 and 150 GHz frequency bands and discuss our plans to field an array of these detectors as part of the ACTPol project.

Keywords

Cosmic microwave background Superconducting detectors Feedhorn TES Polarimeter Millimeter-wave Silicon lenses Antireflection coating 

Notes

Acknowledgments

This work was supported by NASA through award NNX13AE56G and the NASA Space Technology Research Fellowship grant NNX12AM32H and by the U.S. National Science Foundation through awards AST-0965625 and PHY-1214379.

References

  1. 1.
    D. Baumann et al., in AIP Conference Proc., vol. 1141 (2009), pp. 10–120Google Scholar
  2. 2.
    K. Smith et al., in AIP Conference Proc., vol. 1141 (2009), pp. 121–178Google Scholar
  3. 3.
    M. Niemack et al., in Proc. of the SPIE. vol. 7741 (2010), p. 21Google Scholar
  4. 4.
    Y. Takeichi, T. Hashimoto, F. Takeda, IEEE Trans. Microwave Theory Tech. MIT–19, 947–950 (1971)ADSCrossRefGoogle Scholar
  5. 5.
    J. Britton et al., in Proc. of the SPIE. vol. 7741 (2010), p. 11Google Scholar
  6. 6.
    J. McMahon et al., J. Low Temp. Phys. 167, 5–6 (2012)CrossRefGoogle Scholar
  7. 7.
    R. Knoechel, B. Mayer in IEEE MTT-S International Microwave Symposium Digest, (1990), p. 471Google Scholar
  8. 8.
    Ansoft High Frequency Structure Simulator (HFSS) software packageGoogle Scholar
  9. 9.
    G. Cataldo et al., Opt. Lett. 37(20), 4200–4202 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    R. Datta et al., Appl. Opt. 52(36), 8747–8758 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • R. Datta
    • 1
  • J. Hubmayr
    • 2
  • C. Munson
    • 1
  • J. Austermann
    • 3
  • J. Beall
    • 2
  • D. Becker
    • 2
  • H. M. Cho
    • 2
  • N. Halverson
    • 3
  • G. Hilton
    • 2
  • K. Irwin
    • 2
  • D. Li
    • 2
  • J. McMahon
    • 1
  • L. Newburgh
    • 4
  • J. Nibarger
    • 5
  • M. Niemack
    • 2
    • 6
  • B. Schmitt
    • 7
  • H. Smith
    • 1
  • S. Staggs
    • 4
  • J. Van Lanen
    • 2
  • E. Wollack
    • 8
  1. 1.Department of PhysicsUniversity of Michigan Ann ArborAnn ArborUSA
  2. 2.National Institute of Standards and TechnologyBoulderUSA
  3. 3.Department of Astrophysical SciencesUniversity of ColoradoBoulderUSA
  4. 4.Department of PhysicsPrinceton UniversityPrincetonUSA
  5. 5.Boulder Micro-Fabrication FacilityNational Institute of Standards and TechnologyBoulderUSA
  6. 6.Physics DepartmentCornell UniversityIthacaUSA
  7. 7.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaUSA
  8. 8.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations