Advertisement

Journal of Low Temperature Physics

, Volume 176, Issue 3–4, pp 453–458 | Cite as

Performance of Frequency Division Multiplexing Readout System for AC-Biased Transition-Edge Sensor X-ray Microcalorimeters

  • R. Yamamoto
  • K. Sakai
  • Y. Takei
  • N. Y. Yamasaki
  • K. Mitsuda
Article

Abstract

Frequency division multiplexing (FDM) is a promising approach to read out a large format transition-edge sensor (TES) array for future astrophysical missions. We constructed a four channel FDM readout system using baseband feedback in the MHz band. We demonstrated the principle of our FDM method with an actual TES array, a multiplexing SQUID and LC band-pass filters under 100 mK. The resonant frequencies of LC filters were consistent with the design value with an accuracy of better than 3 %. We successfully obtained X-ray pulses from two TESs simultaneously but the energy resolution was degraded to about 100 eV at 5.9 keV and crosstalk effects were observed. The origin of the crosstalk effects is investigated by modified setups. Based on comparative experiments and numerical calculations, we conclude that the non-linearity of the SQUID is the cause of some of the crosstalk effects. Unlike the regular crosstalk effect from the adjoining channels, the crosstalk effect due to non-linearity observed in this paper occurs in all channels. Solving these problems will help us to obtain FDM readout with sufficient energy resolution.

Keywords

X-ray TES FDM BBFB Crosstalk 

Notes

Acknowledgments

The SQUIDs were fabricated in the clean room for analog–digital superconductivity (CRAVITY) of National Institute of Advanced Industrial Science and Technology (AIST) with the standard process 3 (STP3). This work was financially supported by JSPS grant-in-aids (KAKENHI 22111513 and 21224003).

References

  1. 1.
    K.D. Irwin, L.R. Vale, N.E. Bergren, E.N. Grossman, G.C. Hilton, S.W. Nam, C.D. Reintsema, A. Rudman, M.E. Huber, AIP Conf. Proc. 605, 301 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    J.W. Fowler, W.B. Doriese, G. Hilton, K.D. Irwin, D. Schmidt, G. Stiehl, D. Swetz, J.N. Ullom, L. Vale, J. Low Temp. Phys. 167, 713 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    J. van der Kuur, J. Beyer, D. Boersma, M. Bruin, L. Gottardi, R. den Hartog, H. Hoevers, R. Hou, M. Kiviranta, P.J. de Korte, B. -J. van Leeuwen, AIP Conf. Proc. 245, 245 (2009)Google Scholar
  4. 4.
    R. den Hartog, J. Beyer, D. Boersma, M. Bruijn, L. Gottardi, H. Hoevers, R. Hou, M. Kiviranta, P.J. de Korte, J. van der Kuur, B. -J. van Leeuwen, M. Lindeman, A. Nieuwenhuizen, IEEE Trans. Appl. Supercond. 21, 289 (2011)Google Scholar
  5. 5.
    T. Ohashi, Y. Ishisaki, Y. Ezoe, S. Sasaki, H. Kawahara, K. Mitsuda, N.Y. Yamasaki, Y. Takei, M. Ishida, Y. Tawara, I. Sakurai, A. Furuzawa, Y. Suto, K. Yoshikawa, N. Kawai, R. Fujimoto, T.G. Tsuru, K. Matsushita, T. Kitayama, Proc. SPIE 7732, 1 (2010)Google Scholar
  6. 6.
    Y. Takei, N.Y. Yamasaki, W. Hirakoso, S. Kimura, K. Mitsuda, Supercond. Sci. Technol. 22, 114008 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    K. Tanaka, A. Odawara, A. Nagata, M. Ikeda, Y. Baba, S. Nakayama, K. Chinone, Nucl. Instrum. Methods. Phys. Res., Sect. A 559, 737 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    K. Sakai, Y. Takei, R. Yamamoto, N.Y. Yamasaki, K. Mitsuda, M. Hidaka, S. Nagasawa, S. Kohjiro, T. Miyazaki, In This Special Issue LTD15 in J. Low Temp. Phys.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • R. Yamamoto
    • 1
  • K. Sakai
    • 1
  • Y. Takei
    • 1
  • N. Y. Yamasaki
    • 1
  • K. Mitsuda
    • 1
  1. 1.ISAS/JAXASagamiharaJapan

Personalised recommendations