Journal of Low Temperature Physics

, Volume 176, Issue 3–4, pp 188–193 | Cite as

Transport and Two-Species Capture of Electrons and Holes in Ultrapure Germanium at MilliKelvin Temperature

  • K. M. Sundqvist
  • A. Phipps
  • A. V. Dixit
  • B. Sadoulet


This work describes the transport and capture processes of electrons and holes in ultrapure germanium \(\langle 100 \rangle \) at low temperature and low electric field. Dynamic space-charge effects are responsible for the most significant systematics of the Cryogenic Dark Matter Search. To understand the relationship of transport dynamics to space charge evolution, it is important that we understand charge carrier transport under these nonequilibrium operating conditions. Here, we present measured data and a consistent model of electron and hole dynamics and capture. A charged and a neutral capture probability for both electrons and holes appears to explain the multiple, field-dependent power laws observed in data. This offers a quantitative understanding why germanium crystals operating under these conditions should “neutralize” when grounded, but accrue space charge while under bias.


Semiconductors Germanium Nonequilibrium capture Hot carriers Carrier transport Recombination 



This work was supported in part by the US Department of Energy and National Science Foundation.


  1. 1.
    A. Phipps, K.M. Sundqvist, A.C.Y. Lam, B. Sadoulet, J. Low Temp. Phys. 167(5–6), 1112–1118 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    M. Lax, Phys. Rev. 119(5), 1502–1523 (1960)ADSCrossRefGoogle Scholar
  3. 3.
    K.M. Sundqvist, A.T.J. Phipps, C.N. Bailey, P.L. Brink, B. Cabrera, M. Daal, A.C.Y. Lam, N. Mirabolfathi, L. Novak, M. Pyle, B. Sadoulet, B. Serfass, D. Seitz, A. Tomada, J.J. Yen, AIP Conf. Proc. 1185, 128–131 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    K.M. Sundqvist, PhD thesis, University of California, Berkeley, 2012Google Scholar
  5. 5.
    C. Jacoboni, F. Nava, C. Canali, G. Ottaviani, Phys. Rev. B 24(2), 1014–1026 (1981)ADSCrossRefGoogle Scholar
  6. 6.
    L. Reggiani, C. Canali, F. Nava, G. Ottaviani, Phys. Rev. B 16, 2781 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    K.M. Sundqvist, B. Sadoulet, J. Low Temp. Phys. 151, 443–447 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    B. Cabrera, M. Pyle, R. Moffatt, K. Sundqvist, B. Sadoulet, arXiv 1004.1233 (2010)Google Scholar
  9. 9.
    B.K. Ridley, Quantum Processes in Semiconductors, 4th edn. (Clarendon Press, Oxford, 1999)Google Scholar
  10. 10.
    T. Shutt, PhD thesis, University of California, Berkeley, 1993Google Scholar
  11. 11.
    A. Broniatowski, et al. in this Special Issue LTD15 in J. Low Temp. Phys.Google Scholar
  12. 12.
    V.N. Abakumov, V.I. Perel, I.N. Yassievich, Nonradiative recombination in semiconductors, Modern Problems in Condensed Matter Sciences, vol. 33 (North Holland, Amsterdam, 1991)Google Scholar
  13. 13.
    M. Taniguchi, S. Narita, J. Phys. Soc. Jpn. 43(4), 1262–1269 (1977)ADSCrossRefGoogle Scholar
  14. 14.
    V.N. Abakumov, V.I. Perel, I.N. Yassievich, Sov. Phys. 12, 1 (1978)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • K. M. Sundqvist
    • 1
  • A. Phipps
    • 1
  • A. V. Dixit
    • 1
  • B. Sadoulet
    • 1
  1. 1.Department of PhysicsUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations