Advertisement

Journal of Low Temperature Physics

, Volume 176, Issue 3–4, pp 323–330 | Cite as

Sensitivity to Cosmic Rays of Cold Electron Bolometers for Space Applications

  • M. Salatino
  • P. de Bernardis
  • L. S. Kuzmin
  • S. Mahashabde
  • S. Masi
Article

Abstract

An important phenomenon limiting the sensitivity of bolometric detectors for future space missions is the interaction with cosmic rays. We tested the sensitivity of Cold Electron Bolometers (CEBs) to ionizing radiation using gamma-rays from a radioactive source and X-rays from an X-ray tube. We describe the test setup and the results. As expected, due to the effective thermal insulation of the sensing element and its negligible volume, we find that CEBs are largely immune to this problem.

Keywords

Bolometers Cold electrons Cosmic rays Space instrumentation 

Notes

Acknowledgments

The authors wish to thank Dr. D. Fargion and Dr. I. Dafinei for allowing us to use some of their instruments for our measurements. This research has been funded in Italy by the Italian Space Agency (grant I/022/11/0 LSPE).

References

  1. 1.
    A. Caserta, P. de Bernardis, S. Masi, M. Mattioli, Nuclear Instrum. Methods Phys. Res. A294, 328 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    Planck collaboration, arXiv:astro-ph/1303.5071 (2013)Google Scholar
  3. 3.
    COrE collaboration white paper, arXiv:astro-ph/1102.2181 (2011), see also http://www.core-mission.org
  4. 4.
    PRISM collaboration white paper, arXiv:astro-ph/1306.2259 (2013), see also http://www.prism-mission.org
  5. 5.
    S. Masi, E. Battistelli, P. de Bernardis, L. Lamagna, F. Nati, L. Nati, P. Natoli, G. Polenta, A. Schillaci, A &A 519, A24 (2010)ADSGoogle Scholar
  6. 6.
    L.S. Kuzmin, in Proceedings of SPIE, Millimeters and Submillimeter Detectors II 5498, 349 (J. Zmuidzinas, W.S. Holland, and S. Withington, Glasgow, 2004)Google Scholar
  7. 7.
    L.S. Kuzmin, J. Phys. Conf. Ser. 97, 012310 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    L.S. Kuzmin, Cold-Electron Bolometer, in book: BOLOMETERS, ed. A.G.U.Perera, INTECHWEB.ORG, ISBN 978-953-51-0235-9 (2012). Chapter 4, doi: 10.5772/32259
  9. 9.
    P. de Bernardis, et al., Proceedings of SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI 8452, 84523F (W.S. Holland and J. Zmuidzinas, Amsterdam, 2012); arXiv:astro-ph/1208.0282Google Scholar
  10. 10.
    LSPE collaboration, Proc. SPIE, Ground-based and Airborne Instrumentation for Astronomy IV 8446, 84467A (I.S. McLean, S.K. Ramsay, and H. Takami, Amsterdam, 2012); arXiv:astro-ph/1208.0281Google Scholar
  11. 11.
    National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov/
  12. 12.
    R. Klockenkämper, Total-reflection X-ray fluorescence analysis (Wiley, New York, 1997)Google Scholar
  13. 13.
    A.H. Compton, S.K. Allison, X-Rays in Theory and Experiment (D. Van Nostrand Company Inc, Princeton, 1963), pp. 89–90Google Scholar
  14. 14.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. Salatino
    • 1
  • P. de Bernardis
    • 1
  • L. S. Kuzmin
    • 2
  • S. Mahashabde
    • 2
  • S. Masi
    • 1
  1. 1.Physics DepartmentSapienza University of RomeRomeItaly
  2. 2.Department of Microtechnology and NanoscienceMC2 Chalmers University of TechnologyGöteborgSweden

Personalised recommendations