Advertisement

Journal of Low Temperature Physics

, Volume 174, Issue 5–6, pp 292–300 | Cite as

Influence of Off-Centre Operation on the Performance of HTS Maglev

  • Y. Gou
  • D. He
  • J. Zheng
  • C. Ye
  • Y. Xu
  • R. Sun
  • T. Che
  • Z. Deng
Article

Abstract

Owing to instinctive self-stable levitation characteristics, high-temperature superconducting (HTS) maglev using bulk high-temperature superconductors attracts more and more attention from scientists and engineers around the world. In this paper, the levitation force relaxation and guidance force characteristics of a Y–Ba–Cu–O levitation unit with different eccentric distances (EDs) off the center of the permanent magnet guideway were experimentally investigated under field-cooling (FC) conditions. Experimental results indicate that the levitation force slightly increases at small EDs firstly, but degrades with further increasing of EDs. However, the maximum guidance force and its stiffness exhibit enhancement in moderate ED range. The results demonstrate that a properly designed initial FC eccentric distance is important for the practical applications of HTS maglev according to specific requirements like running in curve lines.

Keywords

High-temperature superconducting maglev Eccentric distance Levitation force Guidance force Guidance force stiffness 

Notes

Acknowledgments

This work was partially supported by the National Natural Science Foundation in China (51207132, 51307147, 51375404), the Fundamental Research Funds for the Central Universities (SWJTU11ZT34, 2682013CX028) and the State Key Laboratory of Traction Power at Southwest Jiaotong University (2012TPL_Z01).

References

  1. 1.
    R.M. Stephan, R. de Andrade, A.C. Ferreira, IEEE Veh. Technol. Mag. 7, 122 (2012)CrossRefGoogle Scholar
  2. 2.
    F.N. Werfel, U. Floegel-Delor, R. Rothfeld, T. Riedel, B. Goebel, D. Wippich, P. Schirrmeister, Supercond. Sci. Technol. 25, 014007 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    W. Gawalek, T. Habisreuther, M. Zeisberger, D. Litzkendorf, O. Surzhenko, S. Kracunovska, T.A. Prikhna, B. Oswald, L.K. Kovalev, W. Canders, Supercond. Sci. Technol. 17, 1185 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    H.T. Ren, L. Xiao, Y.L. Jiao, M.H. Zheng, Physica C 412–414, 597 (2004)CrossRefGoogle Scholar
  5. 5.
    M. Murakami, Supercond. Sci. Technol. 13, 448 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Deng, J. Zheng, Q. Lin, J. Li, Y. Zhang, S. Wang, J. Wang, J. Low Temp. Phys. 162, 72 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    K.B. Ma, Y.V. Postrekhin, W.K. Chu, Rev. Sci. Instrum. 74, 4989 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Z. Deng, J. Wang, J. Zheng, H. Jing, J. Li, W. Liu, Y. Zhang, S. Wang, IEEE Trans. Appl. Supercond. 19, 2137 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    W. Liu, J.S. Wang, Q.X. Lin, G.T. Ma, J. Zheng, J. Low Temp. Phys. 158, 922 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    S.Y. Wang, J.S. Wang, C.Y. Deng, Y.Y. Lu, Y.W. Zeng, H.H. Song, H.Y. Huang, H. Jing, Y.G. Huang, X.Z. Wang, Y. Zhang, IEEE Trans. Appl. Supercond. 17, 2067 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    D.H. Jiang, J.S. Wang, G.T. Ma, Y.Y. Xu, Q.X. Lin, J. Zheng, S.Y. Wang, IEEE Trans. Appl. Supercond. 22, 3600304 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Y. Gou
    • 1
  • D. He
    • 1
  • J. Zheng
    • 1
  • C. Ye
    • 1
  • Y. Xu
    • 1
  • R. Sun
    • 1
  • T. Che
    • 1
  • Z. Deng
    • 1
  1. 1.Applied Superconductivity Laboratory (ASCLab), State Key Laboratory of Traction Power (TPL)Southwest Jiaotong University (SWJTU)Chengdu People’s Republic of China

Personalised recommendations