Advertisement

Journal of Low Temperature Physics

, Volume 174, Issue 5–6, pp 284–291 | Cite as

Properties of a Strong Coupling Bipolaron in an Asymmetric Quantum Dot

  • Jing-lin Xiao
Article

Abstract

We study a strong coupling bipolaron’s vibrational frequency, self-trapping energy and potential induced by the electron–longitudinal optical (LO) phonon interaction in an asymmetric quantum dot (AQD). The effects of the electron–phonon coupling strength, the transverse and longitudinal effective confinement lengths are taken into account by using linear combination operator and unitary transformation methods. It is found that the vibrational frequency is an increasing function of the electron–phonon coupling strength, whereas it is a decreasing one of the transverse and longitudinal effective confinement lengths. The absolute values of the self-trapping energy and the potential induced by the electron–LO phonon interaction will increase with increasing coupling strength or decreasing effective confinement lengths.

Keywords

Asymmetric quantum dots Bipolaron Linear combination operator 

Notes

Acknowledgments

This project was supported by the National Science Foundation of China under Grant No. 10964005.

References

  1. 1.
    J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Science 309, 2180 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    D. Emin, M.S. Hillery, Phys. Rev. B 39, 6575 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    N. Koch, H. Oji, E. Ito, E. Zojer, H. Ishii, G. Leising, K. Seki, Appl. Surf. Sci. 175, 764 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    D.H. Park, H.S. Kim, Y.B. Lee, J.M. Ko, J.Y. Lee, H.J. Kim, D.C. Kim, J. Kim, J. Joo, Synth. Met. 158, 90 (2008)Google Scholar
  6. 6.
    T.D. Nguyen, Y. Sheng, J. Rybicki, G. Veeraraghavan, M. Wohlgenannt, Synth. Met. 160, 320 (2010)CrossRefGoogle Scholar
  7. 7.
    R.T. Senger, A. Erçelebi, J. Phys. Condens. Matter 14, 5549 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    M. Hohenadler, P.B. Littlewood, Phys. Rev. B 76, 155122 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    BYa. Yavidov, Phys. C Supercond. 471, 71 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Y.H. Ruan, Q.H. Chen, Z.K. Jiao, J. Zhejiang Univ. Sci. A 5, 873 (2004)CrossRefGoogle Scholar
  11. 11.
    L.Y. Zheng, Y.N. Chiu, S.T. Lai, J. Mol. Struct. (THEOCHEM) 722, 147 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Y.H. Yan, C.Q. Wu, Phys. Lett. A 364, 425 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    R.T. Senger, B. Kozal, A. Chatterjee, A. Ercelebi, Eur. Phys. J. B 78, 525 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    R.T. Senger, A. Ercelebi, Phys. Rev. B 60, 10 071 (1999)CrossRefGoogle Scholar
  15. 15.
    R.T. Senger, A. Ercelebi, Phys. Rev. B 61, 6063 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Y.H. Ruan, Q.H. Chen, Z.K. Jiao, Commun. Theor. Phys. 42, 785 (2004)Google Scholar
  17. 17.
    Eerdunchaolu, Wuyunqimuge, X. Xiao, C. Han, W. Xin, Commun. Theor. Phys. 57, 157 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Condensed Matter PhysicsInner Mongolia University for the NationalitiesTongliaoPeople’s Republic of China

Personalised recommendations