Skip to main content
Log in

Towards X-ray Thermal Kinetic Inductance Detectors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Traditionally, kinetic inductance detectors (KIDs) have been thought of as non-equilibrium detectors, which detect the excess of quasiparticles from the absorbed photon. In this case, recombination of quasiparticles is the bottleneck that limits the quasiparticle lifetime. However, the response of a KID to an excess of quasiparticles from photon absorption gives a nearly identical response to the increase in quasiparticle density due to a temperature change. Thus, KIDs can be used as thermometers to detect the temperature rise in an absorber due to a thermalized X-ray photon. In this work, we present a working prototype of an X-ray thermal KID (i.e., TKID) using a tungsten silicide resonator with superconducting tantalum absorber on a silicon nitride membrane. Finally, we outline improvements for future designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.A. Mazin, B. Bumble, P.K. Day, M.E. Eckart, S. Golwala, J. Zmuidzinas, F.A. Harrison, Appl. Phys. Lett. 89, 222507 (2006)

    Article  ADS  Google Scholar 

  2. O. Quaranta, T.W. Cecil, L. Gades, B.A. Mazin, A. Miceli, Supercond. Sci. Technol. 26, 105021 (2013)

    Article  ADS  Google Scholar 

  3. J. Gao, J. Zmuidzinas, A. Vayonakis, P. Day, B. Mazin, H. Leduc, J. Low Temp. Phys. 151, 557 (2008)

    Article  ADS  Google Scholar 

  4. N. Vercruyssen, R. Barends, T.M. Klapwijk, J.T. Muhonen, M. Meschke, J.P. Pekola, Appl. Phys. Lett. 99, 062509 (2011)

    Article  Google Scholar 

  5. B.A. Mazin, Ph.D. Dissertation, California Institute of Technology, 2004.

  6. T.W. Cecil, A. Miceli, O. Quaranta, C. Liu, D. Rosenmann, S. McHugh, B. Mazin, Appl. Phys. Lett. 101, 032601 (2012)

    Article  ADS  Google Scholar 

  7. M.A. Lindeman, P. Khosropanah, R.A. Hijmering, J. Appl. Phys. 113, 074502 (2013)

    Article  ADS  Google Scholar 

  8. R. Kelley et al., Publ. Astron. Soc. Jpn. 59, S77 (2007)

    ADS  Google Scholar 

  9. E. Perinati, M. Barbera, S. Varisco, E. Silver, J. Beeman, C. Pigot, Rev. Sci. Instrum. 79, 053905 (2008)

    Article  ADS  Google Scholar 

  10. T. Saab, E. Figueroa-Feliciano, N. Iyomoto, S.R. Bandler, J.A. Chervenak, R.L. Kelley, C.A. Kilbourne, F.S. Porter, J.E. Sadleir, J. Appl. Phys. 102, 104502 (2007)

    Article  ADS  Google Scholar 

  11. J. Gao, Ph.D. dissertation, California Institute of Technology, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Miceli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miceli, A., Cecil, T.W., Gades, L. et al. Towards X-ray Thermal Kinetic Inductance Detectors. J Low Temp Phys 176, 497–503 (2014). https://doi.org/10.1007/s10909-013-1033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-1033-0

Keywords

Navigation