Advertisement

Journal of Low Temperature Physics

, Volume 176, Issue 3–4, pp 497–503 | Cite as

Towards X-ray Thermal Kinetic Inductance Detectors

  • A. Miceli
  • T. W. Cecil
  • L. Gades
  • O. Quaranta
Article

Abstract

Traditionally, kinetic inductance detectors (KIDs) have been thought of as non-equilibrium detectors, which detect the excess of quasiparticles from the absorbed photon. In this case, recombination of quasiparticles is the bottleneck that limits the quasiparticle lifetime. However, the response of a KID to an excess of quasiparticles from photon absorption gives a nearly identical response to the increase in quasiparticle density due to a temperature change. Thus, KIDs can be used as thermometers to detect the temperature rise in an absorber due to a thermalized X-ray photon. In this work, we present a working prototype of an X-ray thermal KID (i.e., TKID) using a tungsten silicide resonator with superconducting tantalum absorber on a silicon nitride membrane. Finally, we outline improvements for future designs.

Keywords

Kinetic inductance detectors X-ray Thermal Microcalorimeter 

References

  1. 1.
    B.A. Mazin, B. Bumble, P.K. Day, M.E. Eckart, S. Golwala, J. Zmuidzinas, F.A. Harrison, Appl. Phys. Lett. 89, 222507 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    O. Quaranta, T.W. Cecil, L. Gades, B.A. Mazin, A. Miceli, Supercond. Sci. Technol. 26, 105021 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    J. Gao, J. Zmuidzinas, A. Vayonakis, P. Day, B. Mazin, H. Leduc, J. Low Temp. Phys. 151, 557 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    N. Vercruyssen, R. Barends, T.M. Klapwijk, J.T. Muhonen, M. Meschke, J.P. Pekola, Appl. Phys. Lett. 99, 062509 (2011)CrossRefGoogle Scholar
  5. 5.
    B.A. Mazin, Ph.D. Dissertation, California Institute of Technology, 2004.Google Scholar
  6. 6.
    T.W. Cecil, A. Miceli, O. Quaranta, C. Liu, D. Rosenmann, S. McHugh, B. Mazin, Appl. Phys. Lett. 101, 032601 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    M.A. Lindeman, P. Khosropanah, R.A. Hijmering, J. Appl. Phys. 113, 074502 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    R. Kelley et al., Publ. Astron. Soc. Jpn. 59, S77 (2007)ADSGoogle Scholar
  9. 9.
    E. Perinati, M. Barbera, S. Varisco, E. Silver, J. Beeman, C. Pigot, Rev. Sci. Instrum. 79, 053905 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    T. Saab, E. Figueroa-Feliciano, N. Iyomoto, S.R. Bandler, J.A. Chervenak, R.L. Kelley, C.A. Kilbourne, F.S. Porter, J.E. Sadleir, J. Appl. Phys. 102, 104502 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    J. Gao, Ph.D. dissertation, California Institute of Technology, 2008.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Miceli
    • 1
  • T. W. Cecil
    • 1
  • L. Gades
    • 1
  • O. Quaranta
    • 1
  1. 1.X-ray Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations