Advertisement

Journal of Low Temperature Physics

, Volume 176, Issue 5–6, pp 973–978 | Cite as

Scintillating Bolometers for Rare Events Searches: The LUCIFER Experiment

  • L. Cardani
  • The LUCIFER Collaboration
Article

Abstract

The main goal of LUCIFER is the study of the neutrino-less double beta decay, a rare process that, if detected, could demonstrate the Majorana nature of neutrino and set the absolute mass of this particle. Dealing with rare decays, one of the most critical issues of the experiment is the background reduction. This requirement will be satisfied by LUCIFER thanks to the use of Zn\(^{82}\)Se scintillating bolometers: the simultaneous read-out of heat and light emitted by the interactions in the detector will allow to reject most of the spurious events, providing a background of 10\(^{-3}\) counts/keV/kg/year at the transition energy of \(^{82}\)Se (2,997 keV). The detector will be made by tens of \(\sim \)0.5 kg ZnSe crystals and Ge light detectors operated as bolometers at 10 mK. We present the results obtained with a single detector module in terms of energy resolution, radio-purity and background rejection capability. In addition, we discuss the feasibility of dark matter searches in the framework of the LUCIFER experiment.

Keywords

Bolometer Neutrinoless double beta decay Dark matter 

Notes

Acknowledgments

The LUCIFER experiment was funded by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant agreement n. 247115.

References

  1. 1.
    M. Agostini et al., Phys. Rev. Lett. 111, 122503 (2013)CrossRefADSGoogle Scholar
  2. 2.
    M. Auger et al., Phys. Rev. Lett. 109, 032505 (2012)CrossRefADSGoogle Scholar
  3. 3.
    A. Gando et al., Phys. Rev. Lett. 110, 062502 (2013)CrossRefADSGoogle Scholar
  4. 4.
    D.M. Chernyak et al., Eur. Phys. J. C 72, 1989 (2012)CrossRefADSGoogle Scholar
  5. 5.
    E. Fiorini, T. Niinikoski, Nucl. Instrum. Methods 83, 224 (1984)Google Scholar
  6. 6.
    E. Andreotti et al., Astropart. Phys. 34, 822–831 (2011)CrossRefADSGoogle Scholar
  7. 7.
    C. Arnaboldi et al., Nucl. Instrum. Methods A 518, 775–798 (2004)CrossRefADSGoogle Scholar
  8. 8.
    M. Clemenza et al., Eur. Phys. J. C 71, 1805 (2011)CrossRefADSGoogle Scholar
  9. 9.
    L. Canonica for the CUORE collaboration, this special issue LTD15 in J. Low Temp. Phys.Google Scholar
  10. 10.
    J.W. Beeman et al., Astropart. Phys. 35, 558–562 (2012)CrossRefADSGoogle Scholar
  11. 11.
    F. Bellini et al., JINST 7, P11014 (2012)CrossRefADSGoogle Scholar
  12. 12.
    S. Di Domizio et al., this special issue LTD15 in J. Low Temp. Phys. doi: 10.1007/s10909-013-1076-2
  13. 13.
    D.L. Lincoln, J.D. Holt, G. Bollen, M. Brodeur, S. Bustabad et al., Phys. Rev. Lett. 110, 012501 (2013)CrossRefADSGoogle Scholar
  14. 14.
    J.W. Beeman et al., JINST 1305, P05021 (2013)Google Scholar
  15. 15.
    J.W. Beeman et al., JINST 8, P07021 (2013)ADSGoogle Scholar
  16. 16.
    J.W. Beeman et al., Nucl. Instrum. Methods A 709, 22–28 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Sapienza Università di RomaRomeItaly
  2. 2.INFN Sezione di RomaRomeItaly

Personalised recommendations