Advertisement

Journal of Low Temperature Physics

, Volume 176, Issue 5–6, pp 684–690 | Cite as

Close-Packed Silicon Lens Antennas for Millimeter-Wave MKID Camera

  • Tom Nitta
  • Kenichi Karatsu
  • Yutaro Sekimoto
  • Masato Naruse
  • Masakazu Sekine
  • Shigeyuki Sekiguchi
  • Hiroshi Matsuo
  • Takashi Noguchi
  • Kenji Mitsui
  • Norio Okada
  • Masumichi Seta
  • Naomasa Nakai
Article

Abstract

We have been developing a large-format millimeter-wave camera based on lens-antenna-coupled microwave kinetic inductance detectors (MKIDs) for a planned telescope at Dome Fuji (3810 m a.s.l.), Antarctica. Optical coupling to the MKID incorporates double-slot antennas and a silicon lens array. To realize a large-format camera (\(>\)10,000 pixels), a highly integrated small-diameter lens array and fast optics are required. Lens diameters of 1.2, 2, and 3 times the target wavelength are investigated for the main beam symmetry, side-lobe level, cross-polarization level, and bandwidth, considering the effects of the surrounding lenses. In this study, we present the simulated beam pattern profiles of close-packed lens antenna and the effect of misalignment between the silicon lens and double-slot antenna. We also show the evaluations of the developed 721-pixel close-packed silicon lens array.

Keywords

Close-packed lens array Double-slot antenna Microwave kinetic inductance detector Large-format millimeter-wave camera 

Notes

Acknowledgments

This work was supported by MEXT/JSPS KAKENHI Grant nos. 21111003, 21244023, 25247022, and 24111712.

References

  1. 1.
    P.K. Day et al., Nature 425, 817–821 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 169–214 (2012)CrossRefGoogle Scholar
  3. 3.
    J. Baselmans, J. Low Temp. Phys. 167, 292–304 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    S. Ishii et al., Polar Sci. 3, 213–221 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    M. Naruse et al., IEEE Trans. THz Sci. Technol. 3, 180–186 (2013)CrossRefGoogle Scholar
  6. 6.
    D.F. Filipovic et al., IEEE Trans. Microwave Theory Tech. 41, 1738–1749 (1993)Google Scholar
  7. 7.
    M.J.M. van der Vorst et al., IEEE Trans. Microwave Theory Tech. 49, 1118–1125 (2001)Google Scholar
  8. 8.
    S.J.C. Yates et al., Appl. Phys. Lett. 99, 073505 (2011)CrossRefGoogle Scholar
  9. 9.
    J.C. Pearson et al., Proc. SPIE 4850, 650–661 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    A. Monfardini et al., Astrophys. J. Suppl. Ser. 194, 24 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    T. Nitta et al., IEEE Trans. THz Sci. Technol. 3, 56–62 (2013)CrossRefGoogle Scholar
  12. 12.
    J. Zmuidzinas, H. LeDuc, IEEE Trans. Microwave Theory Tech. 40, 1797–1804 (1992)Google Scholar
  13. 13.
    K. Arnold et al., Proc. SPIE 8452, 84521D (2012)CrossRefGoogle Scholar
  14. 14.
    D. Kasilingam, D. Rutledge, Int. J. Infrared Millim. Waves 7, 1631–1647 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    G. Godi et al., IEEE Trans. Antennas Propag. 53, 1278–1286 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    M. Alonso et al., IEEE Antennas Wirel. Propag. Lett. 12, 84–87 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    A.T. Lee et al., Proc. AIP Conf. 1040, 66–77 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    T. Nitta et al., J. Low Temp. Phys. (submitted)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tom Nitta
    • 1
  • Kenichi Karatsu
    • 2
  • Yutaro Sekimoto
    • 2
  • Masato Naruse
    • 3
  • Masakazu Sekine
    • 4
  • Shigeyuki Sekiguchi
    • 4
  • Hiroshi Matsuo
    • 2
  • Takashi Noguchi
    • 2
  • Kenji Mitsui
    • 2
  • Norio Okada
    • 2
  • Masumichi Seta
    • 1
  • Naomasa Nakai
    • 1
  1. 1.Institute of PhysicsUniversity of TsukubaTsukubaJapan
  2. 2.Advanced Technology CenterNational Astronomical Observatory of JapanMitakaJapan
  3. 3.Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
  4. 4.Department of AstronomyThe University of TokyoBunkyo-kuJapan

Personalised recommendations