Journal of Low Temperature Physics

, Volume 176, Issue 5–6, pp 848–859 | Cite as

Low Temperature Detectors for Neutrino Physics

  • A. Nucciotti


Recent years have witnessed many exciting breakthroughs in neutrino physics. The detection of neutrino oscillations has proved that neutrinos are massive particles but the assessment of their absolute mass scale is still an outstanding challenge in today particle physics and cosmology. Due to their abundance as big-bang relics, massive neutrinos strongly affect the large-scale structure and dynamics of the universe. In addition, the knowledge of the scale of neutrino masses, together with their hierarchy pattern, is invaluable to clarify the origin of fermion masses beyond the Higgs mechanism. The mass hierarchy is not the only missing piece in the puzzle. Theories of neutrino mass generation call into play Majorana neutrinos and there are experimental observations pointing to the existence of sterile neutrinos in addition to the three ones weakly interacting. Since low temperature detectors were first proposed for neutrino physics experiments in 1984, there have been impressive technical progresses: today this technique offers the high energy resolution and scalability required for leading edges and competitive experiments addressing the still open questions.


Neutrinos Neutrino masses Beta decay Neutrinoless double beta decay Electron capture Low temperature detectors Neutrino coherent scattering Sterile neutrinos 


  1. 1.
    G.L. Fogli et al., Phys. Rev. D86, 013012 (2012)Google Scholar
  2. 2.
    J. Lesgourgues, S. Pastor, Adv. High Energy Phys. 2012, 608515 (2012)Google Scholar
  3. 3.
    J.J. Gómez-Cadenas et al., Riv. Nuovo Cim. 35, 29 (2012)Google Scholar
  4. 4.
    K. N. Abazajiana et al., arXiv:1204.5379v1Google Scholar
  5. 5.
    C. Destri, H.J. de Vega, N.G. Sanchez, New Astron. 22, 39 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    M. Agostini et al., arXiv:1307.4720Google Scholar
  7. 7.
    A. Gando et al., Phys. Rev. Lett. 110, 062502 (2013)Google Scholar
  8. 8.
    L. Canonica, J. Low. Temp. Phys., this issueGoogle Scholar
  9. 9.
    M. Auger et al., Phys. Rev. Lett. 109, 032505 (2012)Google Scholar
  10. 10.
    E. Andreotti et al., Astropart. Phys. 34, 822 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    T. Tabarelli de Fatis, Eur. Phys. J. C65, 359 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    J. Beeman et al., Astropart. Phys. 35, 558 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    L. Cardani, The LUCIFER Collaboration, J. Low. Temp. Phys. doi: 10.1007/s10909-013-1030-3
  14. 14.
    G.B. Kim, J. Low. Temp. Phys., this issueGoogle Scholar
  15. 15.
    M. Loidl et al., J. Low. Temp. Phys. doi: 10.1007/s10909-013-1023-2
  16. 16.
    D. Chernyak et al., Eur. Phys. J. C 72, 1 (2012)CrossRefGoogle Scholar
  17. 17.
    Ch. Kraus et al., Eur. Phys. J. C73, 2323 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    V.N. Aseev, Phys. Rev. D84, 112003 (2011)Google Scholar
  19. 19.
    KATRIN Design Report (2004), FZKA7090.
  20. 20.
    M. Galeazzi et al., Phys. Rev. C63, 014302 (2001)Google Scholar
  21. 21.
    F. Gatti et al., Nucl. Phys. B91, 293 (2001)Google Scholar
  22. 22.
    C. Arnaboldi et al., Phys. Rev. Lett. 91, 161802 (2003)Google Scholar
  23. 23.
    M. Sisti et al., NIM A520, 125 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    A. Nucciotti, Nucl. Phys. B 229–232, 155 (2012)CrossRefGoogle Scholar
  25. 25.
    A. De Rujula, M. Lusignoli, Phys. Lett. B118, 429 (1982)ADSCrossRefGoogle Scholar
  26. 26.
    C.W. Reich, B. Singh, Nucl. Data Sh. 111, 1211 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    A. Nucciotti et al., Astropart. Phys. 34, 80 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    M. Lusignoli et al., Phys. Lett. B 697, 11–14 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    M. Galeazzi et al., submitted to PRD, arXiv:1202.4763v2Google Scholar
  30. 30.
    E. Laegsgaard et al., 7th International Conference on Atomic Masses and Fundamental Constants (AMCO-7), Darmstad, Germany (CERN-EP.84-110), 1984Google Scholar
  31. 31.
    F.X. Hartmann, R.A. Naumann, Nucl. Instrum. Methods A313, 237–260 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    F. Gatti et al., Phys. Lett. B398, 415 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    L. Gastaldo, J. Low. Temp. Phys., this issueGoogle Scholar
  34. 34.
    P. Ranitzsch, J. Low. Temp., this issueGoogle Scholar
  35. 35.
    E. Ferri et al., J. Low. Temp. Phys. doi: 10.1007/s10909-013-1026-z
  36. 36.
    G. Pizzigoni, J. Low. Temp. Phys., this issueGoogle Scholar
  37. 37.
    G. J. Kunde, J. Low. Temp. Phys., this issueGoogle Scholar
  38. 38.
    M. Croce, J. Low. Temp. Phys., this issueGoogle Scholar
  39. 39.
    J.A. Formaggio et al., Phys. Lett. B706, 68 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    R. Lazauskas et al., J. Phys. G 35, 025001 (2008)Google Scholar
  41. 41.
    C. Chang, J. Low. Temp. Phys., this issueGoogle Scholar
  42. 42.
    M. Pyle, J. Low. Temp. Phys., this issueGoogle Scholar
  43. 43.
    J.A. Formaggio et al., Phys. Rev. D85, 013009 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Dipartimento di Fisica “G. Occhialini”Università di Milano-BicoccaMilanoItaly
  2. 2.INFN, Sezione di Milano-BicoccaMilanItaly

Personalised recommendations