Skip to main content
Log in

Low Temperature Detectors for Neutrino Physics

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Recent years have witnessed many exciting breakthroughs in neutrino physics. The detection of neutrino oscillations has proved that neutrinos are massive particles but the assessment of their absolute mass scale is still an outstanding challenge in today particle physics and cosmology. Due to their abundance as big-bang relics, massive neutrinos strongly affect the large-scale structure and dynamics of the universe. In addition, the knowledge of the scale of neutrino masses, together with their hierarchy pattern, is invaluable to clarify the origin of fermion masses beyond the Higgs mechanism. The mass hierarchy is not the only missing piece in the puzzle. Theories of neutrino mass generation call into play Majorana neutrinos and there are experimental observations pointing to the existence of sterile neutrinos in addition to the three ones weakly interacting. Since low temperature detectors were first proposed for neutrino physics experiments in 1984, there have been impressive technical progresses: today this technique offers the high energy resolution and scalability required for leading edges and competitive experiments addressing the still open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. G.L. Fogli et al., Phys. Rev. D86, 013012 (2012)

  2. J. Lesgourgues, S. Pastor, Adv. High Energy Phys. 2012, 608515 (2012)

  3. J.J. Gómez-Cadenas et al., Riv. Nuovo Cim. 35, 29 (2012)

    Google Scholar 

  4. K. N. Abazajiana et al., arXiv:1204.5379v1

  5. C. Destri, H.J. de Vega, N.G. Sanchez, New Astron. 22, 39 (2013)

    Article  ADS  Google Scholar 

  6. M. Agostini et al., arXiv:1307.4720

  7. A. Gando et al., Phys. Rev. Lett. 110, 062502 (2013)

  8. L. Canonica, J. Low. Temp. Phys., this issue

  9. M. Auger et al., Phys. Rev. Lett. 109, 032505 (2012)

  10. E. Andreotti et al., Astropart. Phys. 34, 822 (2011)

    Article  ADS  Google Scholar 

  11. T. Tabarelli de Fatis, Eur. Phys. J. C65, 359 (2010)

    Article  ADS  Google Scholar 

  12. J. Beeman et al., Astropart. Phys. 35, 558 (2012)

    Article  ADS  Google Scholar 

  13. L. Cardani, The LUCIFER Collaboration, J. Low. Temp. Phys. doi:10.1007/s10909-013-1030-3

  14. G.B. Kim, J. Low. Temp. Phys., this issue

  15. M. Loidl et al., J. Low. Temp. Phys. doi:10.1007/s10909-013-1023-2

  16. D. Chernyak et al., Eur. Phys. J. C 72, 1 (2012)

    Article  Google Scholar 

  17. Ch. Kraus et al., Eur. Phys. J. C73, 2323 (2013)

    Article  ADS  Google Scholar 

  18. V.N. Aseev, Phys. Rev. D84, 112003 (2011)

  19. KATRIN Design Report (2004), FZKA7090. http://bibliothek.fzk.de/zb/berichte/FZKA7090.pdf

  20. M. Galeazzi et al., Phys. Rev. C63, 014302 (2001)

  21. F. Gatti et al., Nucl. Phys. B91, 293 (2001)

    Google Scholar 

  22. C. Arnaboldi et al., Phys. Rev. Lett. 91, 161802 (2003)

  23. M. Sisti et al., NIM A520, 125 (2004)

    Article  ADS  Google Scholar 

  24. A. Nucciotti, Nucl. Phys. B 229–232, 155 (2012)

    Article  Google Scholar 

  25. A. De Rujula, M. Lusignoli, Phys. Lett. B118, 429 (1982)

    Article  ADS  Google Scholar 

  26. C.W. Reich, B. Singh, Nucl. Data Sh. 111, 1211 (2010)

    Article  ADS  Google Scholar 

  27. A. Nucciotti et al., Astropart. Phys. 34, 80 (2010)

    Article  ADS  Google Scholar 

  28. M. Lusignoli et al., Phys. Lett. B 697, 11–14 (2011)

    Article  ADS  Google Scholar 

  29. M. Galeazzi et al., submitted to PRD, arXiv:1202.4763v2

  30. E. Laegsgaard et al., 7th International Conference on Atomic Masses and Fundamental Constants (AMCO-7), Darmstad, Germany (CERN-EP.84-110), 1984

  31. F.X. Hartmann, R.A. Naumann, Nucl. Instrum. Methods A313, 237–260 (1992)

    Article  ADS  Google Scholar 

  32. F. Gatti et al., Phys. Lett. B398, 415 (1997)

    Article  ADS  Google Scholar 

  33. L. Gastaldo, J. Low. Temp. Phys., this issue

  34. P. Ranitzsch, J. Low. Temp., this issue

  35. E. Ferri et al., J. Low. Temp. Phys. doi:10.1007/s10909-013-1026-z

  36. G. Pizzigoni, J. Low. Temp. Phys., this issue

  37. G. J. Kunde, J. Low. Temp. Phys., this issue

  38. M. Croce, J. Low. Temp. Phys., this issue

  39. J.A. Formaggio et al., Phys. Lett. B706, 68 (2011)

    Article  ADS  Google Scholar 

  40. R. Lazauskas et al., J. Phys. G 35, 025001 (2008)

  41. C. Chang, J. Low. Temp. Phys., this issue

  42. M. Pyle, J. Low. Temp. Phys., this issue

  43. J.A. Formaggio et al., Phys. Rev. D85, 013009 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nucciotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nucciotti, A. Low Temperature Detectors for Neutrino Physics. J Low Temp Phys 176, 848–859 (2014). https://doi.org/10.1007/s10909-013-1006-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-1006-3

Keywords

Navigation