Skip to main content
Log in

Two-Phase Flow and Heat Transfer During Chilldown of a Simulated Flexible Metal Hose Using Liquid Nitrogen

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

For many industrial, medical and space technologies, cryogenic fluids play irreplaceable roles. When any cryogenic system is initially started, it must go through a transient chill down period prior to normal operation. Chilldown is the process of introducing the cryogenic liquid into the system, and allowing the system components to cool down to several hundred degrees below the ambient temperature. The chilldown process is an important initial stage before a system begins functioning. The objective of this paper is to investigate the chilldown process associated with a flexible hose that was simulated by a channel with saw-teeth inner wall surface structure in the current study. We have investigated the fundamental physics of the two-phase flow and quenching heat transfer during cryogenic chilldown inside the simulated flexible hose through flow visualization, data measurement and analysis. The flow pattern developed inside the channel was recorded by a high speed camera for flow pattern investigation. The experimental results indicate that the chilldown process that is composed of unsteady vapor-liquid two-phase flow and phase-change heat transfer is modified by the inner wall surface wavy structure. Based on the measurement of the channel wall temperature, the teeth structure and the associated cavities generally reduce the heat transfer efficiency compared to the straight hose. Furthermore, based on the measured data, a complete series of correlations on the heat transfer coefficient for each heat transfer regime was developed and reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Manera, H. Prasser, D. Lucas, T. Vanderhagen, Int. J. Multiph. Flow 32, 996 (2006)

    Article  MATH  Google Scholar 

  2. C.E. Estrada-Perez, Y.A. Hassan, Int. J. Multiph. Flow 36, 691 (2010)

    Article  Google Scholar 

  3. P. Zhang, X. Fu, Cryogenics 49, 565 (2009)

    Article  ADS  Google Scholar 

  4. X. Fu, P. Zhang, H. Hu, C.J. Huang, Y. Huang, R.Z. Wang, J. Micromech. Microeng. 19, 085005 (2009)

    Article  ADS  Google Scholar 

  5. X. Fu, P. Zhang, C.J. Huang, R.Z. Wang, Int. J. Heat Mass Transf. 53, 4819 (2010)

    Article  Google Scholar 

  6. Y. Barnea, E. Ellas, I. Shai, Int. J. Heat Mass Transf. 37, 1441 (1994)

    Article  Google Scholar 

  7. B.N. Antar, F.G. Collins, Microgravity Sci. Technol. 10, 118 (1997)

    Google Scholar 

  8. O. Kawanami, T. Nishida, I. Honda, Y. Kawashima, H. Ohta, Microgravity Sci. Technol. 19, 137 (2007)

    Article  Google Scholar 

  9. C.J. Westbye, M. Kawaji, B.N. Antar, J. Thermophys. Heat Transf. 9, 302 (1995)

    ADS  Google Scholar 

  10. O. Kawanami, H. Azuma, H. Ohta, Int. J. Heat Mass Transf. 50, 3490 (2007)

    Article  MATH  Google Scholar 

  11. K. Yuan, Y. Ji, J.N. Chung, W. Shyy, J. Low Temp. Phys. 150, 101 (2008)

    Article  ADS  Google Scholar 

  12. H. Hu, J.N. Chung, S.H. Amber, Cryogenics 52, 268 (2012)

    Article  ADS  Google Scholar 

  13. J.P. McHale, S.V. Garimella, Int. J. Multiph. Flow 36, 249 (2010)

    Article  Google Scholar 

  14. J.D. Bernardin, C.J. Stebbins, I. Mudawar, J. Heat Transf. 121, 894 (1999)

    Article  Google Scholar 

  15. Y. Qi, J.F. Klausner, R.W. Mei, Int. J. Heat Mass Transf. 47, 3097 (2004)

    Article  Google Scholar 

  16. Y. Qi, J.F. Klausner, J. Heat Transf. 127, 1189 (2005)

    Article  Google Scholar 

  17. M. Shoji, Y. Takagi, Int. J. Heat Mass Transf. 44, 2763 (2001)

    Article  MATH  Google Scholar 

  18. L. Zhang, M. Shoji, Int. J. Heat Mass Transf. 46, 513 (2003)

    Article  Google Scholar 

  19. A.K. Das, P.K. Das, P. Saha, Exp. Therm. Fluid Sci. 31, 967 (2007)

    Article  Google Scholar 

  20. C.J. Kuo, Y. Peles, Int. J. Heat Mass Transf. 50, 4513 (2007)

    Article  Google Scholar 

  21. H. Honda, J.J. Wei, Exp. Therm. Fluid Sci. 28, 159 (2004)

    Article  Google Scholar 

  22. J.C. Chen, Ind. Eng. Chem. Process Des. Dev. 5, 322 (1966)

    Article  Google Scholar 

  23. Z. Liu, R.H.S. Winterton, Int. J. Heat Mass Transf. 34, 2759 (1991)

    Article  Google Scholar 

  24. S.G. Kandlikar, J. Heat Transf. 112, 219 (1990)

    Article  Google Scholar 

  25. V.V. Klimenko, Cryogenics 22, 569 (1982)

    Article  ADS  Google Scholar 

  26. V.V. Klimenko, A.M. Sudarchikov, Cryogenics 23, 379 (1983)

    Article  ADS  Google Scholar 

  27. M.M. Shah, Cryogenics 24, 231 (1984)

    Article  ADS  Google Scholar 

  28. G.M. Lazarek, B.H. Black, Int. J. Heat Mass Transf. 25, 945 (1982)

    Article  Google Scholar 

  29. W. Yu, D.M. France, M.W. Wambsganss, J.R. Hull, Int. J. Multiph. Flow 28, 927 (2002)

    Article  MATH  Google Scholar 

  30. V.P. Carey, Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, 2nd edn. (Taylor & Francis, London, 2007), pp. 721–722

    Google Scholar 

  31. M.N. Ozisik, Heat Conduction, 2nd edn. (Wiley, New York, 1993), pp. 584–613

    Google Scholar 

  32. O.R. Burggraf, J. Heat Transf. 86, 373 (1964)

    Article  Google Scholar 

  33. N. Zuber, AEC Report No. AECU-4439 (1959)

  34. Y. Katto, C. Kurata, Int. J. Multiph. Flow 6, 575 (1980)

    Article  Google Scholar 

  35. Y. Katto, H. Ohno, Int. J. Heat Mass Transf. 27, 1641 (1984)

    Article  Google Scholar 

  36. Y. Katto, S. Yokoya, Int. J. Multiph. Flow 10, 401 (1984)

    Article  Google Scholar 

  37. Y. Katto, S. Yokoya, Int. J. Heat Mass Transf. 30, 2261 (1987)

    Article  Google Scholar 

  38. Y. Haramura, Y. Katto, Int. J. Heat Mass Transf. 26, 389 (1983)

    Article  MATH  Google Scholar 

  39. I. Mudawar, D.E. Maddox, Int. J. Heat Mass Transf. 32, 379 (1981)

    Article  Google Scholar 

  40. P.J. Berenson, Technical report, Heat Transfer Laboratory, Massachusetts Institute of Technology, 17 (1960)

  41. A.K. Kim, Y. Lee, Lett. Heat Mass Transf. 6, 117 (1979)

    Article  Google Scholar 

  42. W. Li, Z. Wu, Int. J. Heat Mass Transf. 53, 1778 (2010)

    Article  Google Scholar 

  43. R.D. Cess, E.M. Sparrow, J. Heat Transf. 83, 370 (1961)

    Article  Google Scholar 

Download references

Acknowledgements

This research was mainly supported by a grant from the United Launch Alliance Inc. with Mr. Peter G. Wilson as the project monitor and partially by the Andrew H. Hines, Jr./Progress Energy Endowment Fund. Thanks are due to Jason Hartwig of NASA Glenn Research Center for his collaboration and support of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Wijeratne, T.K. & Chung, J.N. Two-Phase Flow and Heat Transfer During Chilldown of a Simulated Flexible Metal Hose Using Liquid Nitrogen. J Low Temp Phys 174, 247–268 (2014). https://doi.org/10.1007/s10909-013-0980-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0980-9

Keywords

Navigation