Advertisement

Journal of Low Temperature Physics

, Volume 174, Issue 5–6, pp 247–268 | Cite as

Two-Phase Flow and Heat Transfer During Chilldown of a Simulated Flexible Metal Hose Using Liquid Nitrogen

  • Hong Hu
  • Thilan K. Wijeratne
  • J. N. Chung
Article

Abstract

For many industrial, medical and space technologies, cryogenic fluids play irreplaceable roles. When any cryogenic system is initially started, it must go through a transient chill down period prior to normal operation. Chilldown is the process of introducing the cryogenic liquid into the system, and allowing the system components to cool down to several hundred degrees below the ambient temperature. The chilldown process is an important initial stage before a system begins functioning. The objective of this paper is to investigate the chilldown process associated with a flexible hose that was simulated by a channel with saw-teeth inner wall surface structure in the current study. We have investigated the fundamental physics of the two-phase flow and quenching heat transfer during cryogenic chilldown inside the simulated flexible hose through flow visualization, data measurement and analysis. The flow pattern developed inside the channel was recorded by a high speed camera for flow pattern investigation. The experimental results indicate that the chilldown process that is composed of unsteady vapor-liquid two-phase flow and phase-change heat transfer is modified by the inner wall surface wavy structure. Based on the measurement of the channel wall temperature, the teeth structure and the associated cavities generally reduce the heat transfer efficiency compared to the straight hose. Furthermore, based on the measured data, a complete series of correlations on the heat transfer coefficient for each heat transfer regime was developed and reported.

Keywords

Liquid nitrogen Correlation Boiling heat transfer Flow pattern visualization 

Notes

Acknowledgements

This research was mainly supported by a grant from the United Launch Alliance Inc. with Mr. Peter G. Wilson as the project monitor and partially by the Andrew H. Hines, Jr./Progress Energy Endowment Fund. Thanks are due to Jason Hartwig of NASA Glenn Research Center for his collaboration and support of this investigation.

References

  1. 1.
    A. Manera, H. Prasser, D. Lucas, T. Vanderhagen, Int. J. Multiph. Flow 32, 996 (2006) CrossRefMATHGoogle Scholar
  2. 2.
    C.E. Estrada-Perez, Y.A. Hassan, Int. J. Multiph. Flow 36, 691 (2010) CrossRefGoogle Scholar
  3. 3.
    P. Zhang, X. Fu, Cryogenics 49, 565 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    X. Fu, P. Zhang, H. Hu, C.J. Huang, Y. Huang, R.Z. Wang, J. Micromech. Microeng. 19, 085005 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    X. Fu, P. Zhang, C.J. Huang, R.Z. Wang, Int. J. Heat Mass Transf. 53, 4819 (2010) CrossRefGoogle Scholar
  6. 6.
    Y. Barnea, E. Ellas, I. Shai, Int. J. Heat Mass Transf. 37, 1441 (1994) CrossRefGoogle Scholar
  7. 7.
    B.N. Antar, F.G. Collins, Microgravity Sci. Technol. 10, 118 (1997) Google Scholar
  8. 8.
    O. Kawanami, T. Nishida, I. Honda, Y. Kawashima, H. Ohta, Microgravity Sci. Technol. 19, 137 (2007) CrossRefGoogle Scholar
  9. 9.
    C.J. Westbye, M. Kawaji, B.N. Antar, J. Thermophys. Heat Transf. 9, 302 (1995) ADSGoogle Scholar
  10. 10.
    O. Kawanami, H. Azuma, H. Ohta, Int. J. Heat Mass Transf. 50, 3490 (2007) CrossRefMATHGoogle Scholar
  11. 11.
    K. Yuan, Y. Ji, J.N. Chung, W. Shyy, J. Low Temp. Phys. 150, 101 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    H. Hu, J.N. Chung, S.H. Amber, Cryogenics 52, 268 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    J.P. McHale, S.V. Garimella, Int. J. Multiph. Flow 36, 249 (2010) CrossRefGoogle Scholar
  14. 14.
    J.D. Bernardin, C.J. Stebbins, I. Mudawar, J. Heat Transf. 121, 894 (1999) CrossRefGoogle Scholar
  15. 15.
    Y. Qi, J.F. Klausner, R.W. Mei, Int. J. Heat Mass Transf. 47, 3097 (2004) CrossRefGoogle Scholar
  16. 16.
    Y. Qi, J.F. Klausner, J. Heat Transf. 127, 1189 (2005) CrossRefGoogle Scholar
  17. 17.
    M. Shoji, Y. Takagi, Int. J. Heat Mass Transf. 44, 2763 (2001) CrossRefMATHGoogle Scholar
  18. 18.
    L. Zhang, M. Shoji, Int. J. Heat Mass Transf. 46, 513 (2003) CrossRefGoogle Scholar
  19. 19.
    A.K. Das, P.K. Das, P. Saha, Exp. Therm. Fluid Sci. 31, 967 (2007) CrossRefGoogle Scholar
  20. 20.
    C.J. Kuo, Y. Peles, Int. J. Heat Mass Transf. 50, 4513 (2007) CrossRefGoogle Scholar
  21. 21.
    H. Honda, J.J. Wei, Exp. Therm. Fluid Sci. 28, 159 (2004) CrossRefGoogle Scholar
  22. 22.
    J.C. Chen, Ind. Eng. Chem. Process Des. Dev. 5, 322 (1966) CrossRefGoogle Scholar
  23. 23.
    Z. Liu, R.H.S. Winterton, Int. J. Heat Mass Transf. 34, 2759 (1991) CrossRefGoogle Scholar
  24. 24.
    S.G. Kandlikar, J. Heat Transf. 112, 219 (1990) CrossRefGoogle Scholar
  25. 25.
    V.V. Klimenko, Cryogenics 22, 569 (1982) ADSCrossRefGoogle Scholar
  26. 26.
    V.V. Klimenko, A.M. Sudarchikov, Cryogenics 23, 379 (1983) ADSCrossRefGoogle Scholar
  27. 27.
    M.M. Shah, Cryogenics 24, 231 (1984) ADSCrossRefGoogle Scholar
  28. 28.
    G.M. Lazarek, B.H. Black, Int. J. Heat Mass Transf. 25, 945 (1982) CrossRefGoogle Scholar
  29. 29.
    W. Yu, D.M. France, M.W. Wambsganss, J.R. Hull, Int. J. Multiph. Flow 28, 927 (2002) CrossRefMATHGoogle Scholar
  30. 30.
    V.P. Carey, Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, 2nd edn. (Taylor & Francis, London, 2007), pp. 721–722 Google Scholar
  31. 31.
    M.N. Ozisik, Heat Conduction, 2nd edn. (Wiley, New York, 1993), pp. 584–613 Google Scholar
  32. 32.
    O.R. Burggraf, J. Heat Transf. 86, 373 (1964) CrossRefGoogle Scholar
  33. 33.
    N. Zuber, AEC Report No. AECU-4439 (1959) Google Scholar
  34. 34.
    Y. Katto, C. Kurata, Int. J. Multiph. Flow 6, 575 (1980) CrossRefGoogle Scholar
  35. 35.
    Y. Katto, H. Ohno, Int. J. Heat Mass Transf. 27, 1641 (1984) CrossRefGoogle Scholar
  36. 36.
    Y. Katto, S. Yokoya, Int. J. Multiph. Flow 10, 401 (1984) CrossRefGoogle Scholar
  37. 37.
    Y. Katto, S. Yokoya, Int. J. Heat Mass Transf. 30, 2261 (1987) CrossRefGoogle Scholar
  38. 38.
    Y. Haramura, Y. Katto, Int. J. Heat Mass Transf. 26, 389 (1983) CrossRefMATHGoogle Scholar
  39. 39.
    I. Mudawar, D.E. Maddox, Int. J. Heat Mass Transf. 32, 379 (1981) CrossRefGoogle Scholar
  40. 40.
    P.J. Berenson, Technical report, Heat Transfer Laboratory, Massachusetts Institute of Technology, 17 (1960) Google Scholar
  41. 41.
    A.K. Kim, Y. Lee, Lett. Heat Mass Transf. 6, 117 (1979) CrossRefGoogle Scholar
  42. 42.
    W. Li, Z. Wu, Int. J. Heat Mass Transf. 53, 1778 (2010) CrossRefGoogle Scholar
  43. 43.
    R.D. Cess, E.M. Sparrow, J. Heat Transf. 83, 370 (1961) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Cryogenics Heat Transfer Laboratory, Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations