Skip to main content
Log in

Fluctuating Surfaces of Growing 4He Crystals in Aerogel

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Crystal-superfluid interface of 4He in aerogel was shown to advance smoothly in a high temperature creep growth region above 0.6 K. In this report, we focused on the shape of the growing interface in the region and attempted to analyze the roughness of interfaces. The growth of rough interfaces is very common in nature and is known to often follow a scaling law; roughness usually increases with time and saturates in the later stage. We measured the roughness w(t) defined as the standard deviation of the interface height as a function of time t. It was found that w(t) in 98 % porosity aerogel initially increased with t and decreased after a particular time in the later stage. The abrupt reduction of roughness in the end of crystallization is unusual if it is intrinsic in the crystallization in aerogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T. Vicsek, Fractal Growth Phenomena, 2nd edn. (World Scientific, Singapore, 1992)

    Book  MATH  Google Scholar 

  2. F. Family, T. Vicsek (eds.), Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991)

    MATH  Google Scholar 

  3. A.-L. Barabási, H.E. Stanly, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)

    Book  MATH  Google Scholar 

  4. J. Maunuksela, M. Myllys, O.-P. Kähkönen, J. Timonen, N. Provatas, M.J. Alava, T. Ala-Nissila, Phys. Rev. Lett. 79, 1515 (1997)

    Article  ADS  Google Scholar 

  5. T. Vicsek, M. Cserzö, V.K. Horváth, Physica A 167, 315 (1990)

    Article  ADS  Google Scholar 

  6. K.A. Takeuchi, M. Sano, Phys. Rev. Lett. 104, 230601 (2010)

    Article  ADS  Google Scholar 

  7. E. Rolley, C. Guthmann, R. Gombrowicz, V. Repain, Phys. Rev. Lett. 80, 2865 (1998)

    Article  ADS  Google Scholar 

  8. M. Sato, M. Uwaha, Y. Saito, Phys. Rev. B 62, 8452 (2000)

    Article  ADS  Google Scholar 

  9. F. Family, T. Vicsek, J. Phys. A 18, L75 (1985)

    Article  ADS  Google Scholar 

  10. M. Kardar, G. Parisi, Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986)

    Article  ADS  MATH  Google Scholar 

  11. S. Balibar, H. Alles, A.Y. Parshin, Rev. Mod. Phys. 77, 317 (2005)

    Article  ADS  Google Scholar 

  12. Y. Okuda, R. Nomura, J. Phys. Soc. Jpn. 77, 111009 (2008)

    Article  ADS  Google Scholar 

  13. R. Nomura, A. Osawa, T. Mimori, K. Kato, Y. Okuda, Phys. Rev. Lett. 101, 175703 (2008)

    Article  ADS  Google Scholar 

  14. R. Nomura, H. Matsuda, R. Masumoto, K. Ueno, Y. Okuda, J. Phys. Soc. Jpn. 80, 123601 (2011)

    Article  ADS  Google Scholar 

  15. H. Matsuda, A. Ochi, R. Isozaki, R. Masumoto, R. Nomura, Y. Okuda, Phys. Rev. E 87, 030401(R) (2013)

    Article  ADS  Google Scholar 

  16. J.V. Porto, J.M. Parpia, Phys. Rev. B 59, 14583 (1999)

    Article  ADS  Google Scholar 

  17. T.M. Haard, G. Gervais, R. Nomura, W.P. Halperin, Physica B 284, 289 (2000)

    Article  ADS  Google Scholar 

  18. F. Detcheverry, E. Kierlik, M.L. Rosinberg, G. Tarjus, Phys. Rev. E 68, 061504 (2003)

    Article  ADS  Google Scholar 

  19. W.P. Halperin, H. Choi, J.P. Davis, J. Pollanen, J. Phys. Soc. Jpn. 77, 111002 (2008)

    Article  ADS  Google Scholar 

  20. T. Lambert, C. Gabay, L. Puech, P.E. Wolf, J. Low Temp. Phys. 134, 293 (2004)

    Article  ADS  Google Scholar 

  21. R. Nomura, W. Miyashita, K. Yoneyama, Y. Okuda, Phys. Rev. E 73, 032601 (2006)

    Article  ADS  Google Scholar 

  22. P.E. Wolf, F. Bonnet, L. Guyon, T. Lambert, S. Perraud, L. Puech, B. Rousset, P. Thibault, Eur. Phys. J. E 28, 183 (2009)

    Article  Google Scholar 

  23. R. Masumoto, K. Ueno, H. Matsuda, R. Nomura, Y. Okuda, J. Low Temp. Phys. 162, 399 (2011)

    Article  ADS  Google Scholar 

  24. T. Herman, J. Day, J. Beamish, Phys. Rev. B 73, 094127 (2006)

    Article  ADS  Google Scholar 

  25. H. Kato, W. Miyashita, R. Nomura, Y. Okuda, J. Low Temp. Phys. 1(48), 621 (2007)

    Article  ADS  Google Scholar 

  26. H. Matsuda, A. Ochi, R. Isozaki, R. Nomura, Y. Okuda, Fiz. Nizk. Temp. 39, 1006 (2013)

    Google Scholar 

Download references

Acknowledgements

We would like to thank J. Pollanen and W.P. Halperin for providing us with aerogel samples supported by NSF grant number DMR-0703656. This study was supported in part by the GCOE at Tokyo Tech. “Nanoscience and Quantum Physics Project”, a Grant-in-Aid for Scientific Research (B) (Grant No. 21340095) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by a “Ground-based Research Announcement for Space Utilization” promoted by JAXA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Matsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochi, A., Matsuda, H., Isozaki, R. et al. Fluctuating Surfaces of Growing 4He Crystals in Aerogel. J Low Temp Phys 175, 126–132 (2014). https://doi.org/10.1007/s10909-013-0974-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0974-7

Keywords

Navigation