Advertisement

Journal of Low Temperature Physics

, Volume 175, Issue 1–2, pp 222–228 | Cite as

Quantum Phase Slips of Trapped Superfluid Bose Gases in One Dimension

  • Ippei Danshita
Article

Abstract

We discuss transport of trapped one-dimensional superfluids through a single impurity potential, in connection with quantum phase-slip nucleation rate Γ. We specifically consider damping of dipole oscillations induced by sudden displacement of the trapping potential, which has been investigated in previous experiments. Applying the time-evolving block decimation method to the 1D Bose-Hubbard model with an impurity potential in the hardcore limit, we calculate the dynamics of dipole oscillations and extract the damping rate from the oscillations. We show that there is a broad parameter region in which the damping rate G of the oscillation obeys the formula GΓ/vv 2K−2 with the Tomonaga-Luttinger parameter K, regardless of whether the impurity potential is repulsive or attractive. We find that in that parameter region the damping rate is almost symmetric with respect to the change of the sign of the impurity strength.

Keywords

1D Bose gas Optical lattice Quantum phase slip Time-evolving block decimation 

Notes

Acknowledgements

The computation in this work was partially done using the RIKEN Cluster of Clusters facility. This work was partially supported by JSPS KAKENHI Grants No.25800228 and No. 25220711.

References

  1. 1.
    T. Stöferle et al., Phys. Rev. Lett. 92, 130403 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    C.D. Fertig et al., Phys. Rev. Lett. 94, 120403 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    J.E. Lye et al., Phys. Rev. Lett. 75, 061603(R) (2007) ADSGoogle Scholar
  4. 4.
    J. Mun et al., Phys. Rev. Lett. 99, 150604 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    E. Haller et al., Nature (London) 466, 597 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    B. Gadway, D. Pertot, J. Reeves, M. Vogt, D. Schneble, Phys. Rev. Lett. 107, 145306 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    L. Tanzi, E. Lucioni, S. Chaudhuri, L. Gori, A. Kumar, C. D’Errico, M. Inguscio, G. Modugno, Phys. Rev. Lett. 111, 115301 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    J. Taniguchi, Y. Aoki, M. Suzuki, Phys. Rev. B 82, 104509 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    T. Eggel, M.A. Cazalilla, M. Oshikawa, Phys. Rev. Lett. 107, 275302 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    A. Bezryadin, Superconductivity in Nanowires (Wiley, Weinheim, 2012) CrossRefGoogle Scholar
  11. 11.
    F. Altomare, A.M. Chang, One-Dimensional Superconductivity in Nanowires (Wiley, Weinheim, 2013) CrossRefGoogle Scholar
  12. 12.
    Z. Wang, W. Shi, R. Lortz, P. Sheng, Nanoscience 4, 21 (2012) ADSGoogle Scholar
  13. 13.
    A. Polkovnikov, E. Altman, E. Demler, B. Halperin, M.D. Lukin, Phys. Rev. A 71, 063613 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    I. Danshita, A. Polkovnikov, Phys. Rev. A 85, 023638 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    I. Danshita, Phys. Rev. Lett. 111, 025303 (2013) ADSCrossRefGoogle Scholar
  16. 16.
    G. Vidal, Phys. Rev. Lett. 93, 040502 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    I. Danshita, C.W. Clark, Phys. Rev. Lett. 102, 030407 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    S. Montangero, R. Fazio, P. Zoller, G. Pupillo, Phys. Rev. A 79, 041602(R) (2009) ADSCrossRefGoogle Scholar
  19. 19.
    M. Okumura, H. Onishi, S. Yamada, M. Machida, Physica C 470, S949 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    A. Hu et al., Phys. Rev. A 84, 041609(R) (2011) ADSCrossRefGoogle Scholar
  21. 21.
    J.-W. Huo, W. Chen, U. Schollwöck, M. Troyer, F.-C. Zhang, Phys. Rev. A 86, 033611 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    I. Danshita, A. Polkovnikov, Phys. Rev. B 82, 094304 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    J. Schachenmayer, G. Pupillo, A.J. Daley, New J. Phys. 12, 025014 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    C.L. Kane, M.P.A. Fisher, Phys. Rev. Lett. 68, 1220 (1992) ADSCrossRefGoogle Scholar
  25. 25.
    Yu. Kagan, N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. A 61, 045601 (2000) ADSCrossRefGoogle Scholar
  26. 26.
    H.P. Büchler, V.B. Geshkenbein, G. Blatter, Phys. Rev. Lett. 87, 100403 (2001) CrossRefGoogle Scholar
  27. 27.
    M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. 83, 1405 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan
  2. 2.Computational Condensed Matter Physics LaboratoryRIKENWakoJapan

Personalised recommendations