Advertisement

Journal of Low Temperature Physics

, Volume 175, Issue 1–2, pp 464–470 | Cite as

Development of a Fiber-Optic Probe Hydrophone for a Cryogenic Liquid

  • K. Obara
  • H. Ohmura
  • C. Kato
  • H. Yano
  • O. Ishikawa
  • T. Hata
Article
  • 221 Downloads

Abstract

We report the progress of developing a fiber-optic probe hydrophone (FOPH) system applicable to the measurement of local density/pressure fluctuations in a cryogenic liquid. The measurement principle is based on a law of classical optics known as “Fresnel’s reflection loss.” We use this principle at the end-face of a single-mode optical fiber that is immersed in liquid helium. Since the refraction index of liquid 4He is a function of density, and the refraction index of the core of the optical fiber is constant, the pressure can be obtained by measuring the reflectivity. We have succeeded in measuring the temperature dependence of the static density, and we go on to discuss the possibility of application to acoustic pressure measurements.

Keywords

Cryogenic sensor Hydrophone Local pressure probe Acoustics 

Notes

Acknowledgements

We thank K. Tojo of Chuo University and R. Nomura of Tokyo Institute of Technology for fruitful discussions. We acknowledge support from a Grant-in-Aid for Young Scientists (B) (Grant No. 22740201 and 24740206) from The Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

References

  1. 1.
    A.A. Atchley, A. Prosperetti, J. Acoust. Soc. Am. 86, 1065 (1989) ADSCrossRefGoogle Scholar
  2. 2.
    R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1221 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    R.D. Finch, R. Kagiwada, M. Barmatz, I. Rudnick, Phys. Rev. 134, A1425 (1964) ADSCrossRefGoogle Scholar
  4. 4.
    V.A. Ackulichev, Ultrasonics 24, 8 (1986) CrossRefGoogle Scholar
  5. 5.
    S. Balibar, J. Low Temp. Phys. 129, 363 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    H. Abe, M. Morikawa, T. Ueda, R. Nomura, Y. Okuda, S.N. Burmistrov, J. Fluid Mech. 619, 261 (2009) ADSCrossRefMATHGoogle Scholar
  7. 7.
    M. Minnaert, Philos. Mag. A 16, 235 (1933) Google Scholar
  8. 8.
    B.E. Noltingk, E.A. Neppiras, Proc. Phys. Soc. Lond. Ser. B 63, 674 (1950) ADSCrossRefGoogle Scholar
  9. 9.
    R.D. Finch, E.A. Neppiras, J. Acoust. Soc. Am. 53, 1402 (1973) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Hao, A. Prosperetti, J. Acoust. Soc. Am. 11, 2008 (1999) MATHMathSciNetGoogle Scholar
  11. 11.
    W. Lauterborn, U. Paritz, J. Acoust. Soc. Am. 84, 1975 (1988) ADSCrossRefGoogle Scholar
  12. 12.
    K. Obara, Y. Kimura, A. Fukui, C. Kato, Y. Nago, H. Yano, O. Ishikawa, T. Hata, J. Phys. Conf. Ser. 400, 012057 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    X. Chavanne, S. Balibar, F. Caupin, Phys. Rev. Lett. 86, 5506 (2001) ADSCrossRefGoogle Scholar
  14. 14.
    F. Souris, J. Grucker, J. Dupont-Roc, Ph. Jacquier, J. Phys.: Conf. Ser. 400, 012069 (2012) ADSGoogle Scholar
  15. 15.
    D.W. Oxtoby, D. Kashchiev, J. Chem. Phys. 100, 7665 (1994) ADSCrossRefGoogle Scholar
  16. 16.
    J. Staudenraus, W. Eisenmenger, Ultrasonics 31, 267 (1993) CrossRefGoogle Scholar
  17. 17.
    K. Davitt, A. Arvengas, F. Caupin, Europhys. Lett. 90, 16002 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    D.B. Leviton, B.J. Frey, T.J. Madison, Cryog. Opt. Syst. Instrum. XII, 669204 (2007) CrossRefGoogle Scholar
  19. 19.
    H.J. Maris, J. Low Temp. Phys. 94, 125 (1994) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • K. Obara
    • 1
  • H. Ohmura
    • 1
  • C. Kato
    • 1
  • H. Yano
    • 1
  • O. Ishikawa
    • 1
  • T. Hata
    • 1
  1. 1.Department of PhysicsOsaka City UniversityOsakaJapan

Personalised recommendations