Advertisement

Journal of Low Temperature Physics

, Volume 175, Issue 1–2, pp 236–242 | Cite as

Elementary Excitations of Antiferromagnetic Spin-1 Bosons in an Optical Lattice

  • M. Shinozaki
  • S. Tsuchiya
  • S. Abe
  • T. Ozaki
  • T. Nikuni
Article

Abstract

We study elementary excitations of spin-1 bosons with antiferromagnetic interaction in an optical lattice by applying the Gutzwiller approximation to the spin-1 Bose-Hubbard model. There appear various excitations associated with spin degrees of freedom in the Mott-insulator (MI) phase as well as in the superfluid (SF) phase. In this system, the ground state in the MI phase is known to exhibit a remarkable effect of even-odd parity of particle filling, in which even fillings stabilize the MI state due to formation of spin-singlet pairs. We find that excitation spectra in the MI phase exhibit characteristic features that reflect the even-odd parity effect of the ground state. We clarify evolution of elementary excitations across the quantum critical point of the SF-MI transition.

Keywords

Spin-1 boson SF-MI transition Elementary excitation 

Notes

Acknowledgements

We thank D. Yamamoto, I. Danshita, M. Kunimi, Y. Kato, and T. Kimura for helpful discussions. S.T. was supported by Grant-in-Aid for Scientific Research, No. 24740276.

References

  1. 1.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    M. Lewenstein, A. Sanpera, V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems (Oxford University Press, Oxford, 2012) CrossRefGoogle Scholar
  3. 3.
    J. Stenger, S. Inouye, D.M. Stamper-Kurn, H.-J. Miesner, A.P. Chikkatur, W. Ketterle, Nature 395, 345 (1998) ADSCrossRefGoogle Scholar
  4. 4.
    D.M. Stamper-Kurn, M. Ueda, Rev. Mod. Phys. 85, 1191 (2013) ADSCrossRefGoogle Scholar
  5. 5.
    E. Demler, F. Zhou, Phys. Rev. Lett. 88, 163001 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    A. Imambekov, M. Lukin, E. Demler, Phys. Rev. A 68, 063602 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    S. Tsuchiya, S. Kurihara, T. Kimura, Phys. Rev. A 70, 043628 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    T. Kimura, S. Tsuchiya, S. Kurihara, Phys. Rev. Lett. 94, 110403 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    S. Konabe, T. Nikuni, M. Nakamura, Phys. Rev. A 73, 033621 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Ohashi, M. Kitaura, H. Matsumoto, Phys. Rev. A 73, 033617 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    E. Altman, A. Auerbach, Phys. Rev. Lett. 89, 250404 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    S.D. Huber, B. Theiler, E. Altman, G. Blatter, Phys. Rev. Lett. 100, 050404 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    P.T. Ernst, S. Götze, J.S. Krauser, K. Pyka, D.-S. Lühmann, D. Pfannkuche, K. Sengstock, Nat. Phys. 6, 56 (2010) CrossRefGoogle Scholar
  14. 14.
    U. Bissbort, S. Götze, Y. Li, J. Heinze, J.S. Krauser, M. Weinberg, C. Becker, K. Sengstock, W. Hofstetter, Phys. Rev. Lett. 106, 205303 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauß, C. Gross, E. Demler, S. Kuhr, I. Bloch, Nature 487, 454 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    D. Yamamoto, C.A.R. Sá de Melo, T. Ozaki, I. Danshita, Phys. Rev. A 88, 033624 (2013) ADSCrossRefGoogle Scholar
  17. 17.
    T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998) ADSCrossRefGoogle Scholar
  18. 18.
    M. Shinozaki, S. Tsuchiya, S. Abe, T. Ozaki, T. Nikuni (to be published) Google Scholar
  19. 19.
    D. McKay, B. DeMarco, New J. Phys. 12, 055013 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. Shinozaki
    • 1
  • S. Tsuchiya
    • 2
  • S. Abe
    • 2
  • T. Ozaki
    • 2
  • T. Nikuni
    • 2
  1. 1.Department of Basic ScienceThe University of TokyoMeguro-ku, TokyoJapan
  2. 2.Department of PhysicsTokyo University of ScienceShinjuku-ku, TokyoJapan

Personalised recommendations