Skip to main content
Log in

Relaxation of Bose-Einstein Condensates of Magnons in Magneto-Textural Traps in Superfluid 3He-B

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In superfluid 3He-B externally pumped quantized spin-wave excitations or magnons spontaneously form a Bose-Einstein condensate in a 3-dimensional trap created with the order-parameter texture and a shallow minimum in the polarizing field. The condensation is manifested by coherent precession of the magnetization with a common frequency in a large volume. The trap shape is controlled by the profile of the applied magnetic field and by the condensate itself via the spin-orbit interaction. The trapping potential can be experimentally determined with the spectroscopy of the magnon levels in the trap. We have measured the decay of the ground state condensates after switching off the pumping in the temperature range (0.14÷0.2)T c. Two contributions to the relaxation are identified: (1) spin diffusion with the diffusion coefficient proportional to the density of thermal quasiparticles and (2) the approximately temperature-independent radiation damping caused by the losses in the NMR pick-up circuit. The measured dependence of the relaxation on the shape of the trapping potential is in a good agreement with our calculations based on the magnetic field profile and the magnon-modified texture. Our values for the spin diffusion coefficient at low temperatures agree with the theoretical prediction and earlier measurements at temperatures above 0.5T c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Snoke, Nature 443, 403 (2006)

    Article  ADS  Google Scholar 

  2. Yu.M. Bunkov, G.E. Volovik, in Novel Superfluids, vol. 1, ed. by K.H. Bennemann, J.B. Ketterson (Oxford University Press, London, 2013), pp. 253–311. arXiv:1003.4889

    Chapter  Google Scholar 

  3. Yu.M. Bunkov, G.E. Volovik, Phys. Rev. Lett. 98, 265302 (2007)

    Article  ADS  Google Scholar 

  4. S.O. Demokritov, V.E. Demidov, O. Dzyapko, G.A. Melkov, A.A. Serga, B. Hillebrands, A.N. Slavin, Nature 443, 430 (2006)

    Article  ADS  Google Scholar 

  5. Yu.M. Bunkov, E.M. Alakshin, R.R. Gazizulin, A.V. Klochkov, V.V. Kuzmin, V.S. L’vov, M.S. Tagirov, Phys. Rev. Lett. 108, 177002 (2012)

    Article  ADS  Google Scholar 

  6. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymaska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature 443, 409 (2006)

    Article  ADS  Google Scholar 

  7. J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Nature 468, 545 (2010)

    Article  ADS  Google Scholar 

  8. A.S. Borovik-Romanov, Yu.M. Bunkov, V.V. Dmitriev, Yu.M. Mukharskii, JETP Lett. 40, 1033 (1984)

    ADS  Google Scholar 

  9. I.A. Fomin, JETP Lett. 40, 1037 (1984)

    ADS  Google Scholar 

  10. Yu.M. Bunkov, V.V. Dmitriev, A.V. Markelov, Yu.M. Mukharskii, D. Einzel, Phys. Rev. Lett. 65, 867 (1990)

    Article  ADS  Google Scholar 

  11. Yu.M. Bunkov, V.V. Dmitriev, Yu.M. Mukharskiy, J. Nyeki, D.A. Sergatskov, Europhys. Lett. 8, 645 (1989)

    Article  ADS  Google Scholar 

  12. Yu.M. Bunkov, S.N. Fisher, A.M. Guénault, G.R. Pickett, Phys. Rev. Lett. 69, 3092 (1992)

    Article  ADS  Google Scholar 

  13. S.N. Fisher, G.R. Pickett, P. Skyba, N. Suramlishvili, Phys. Rev. B 86, 024506 (2012)

    Article  ADS  Google Scholar 

  14. S.N. Fisher, A.M. Guénault, A.J. Hale, G.R. Pickett, P.A. Reeves, G. Tvalashvili, J. Low Temp. Phys. 121, 303 (2000)

    Article  ADS  Google Scholar 

  15. Yu.M. Bunkov, J. Low Temp. Phys. 138, 753 (2005)

    Article  ADS  Google Scholar 

  16. S. Autti, Yu.M. Bunkov, V.B. Eltsov, P.J. Heikkinen, J.J. Hosio, P. Hunger, M. Krusius, G.E. Volovik, Phys. Rev. Lett. 108, 145303 (2012)

    Article  ADS  Google Scholar 

  17. D. Einzel, J. Low Temp. Phys. 84, 321 (1991)

    Article  ADS  Google Scholar 

  18. N. Bloembergen, V. Pound, Phys. Rev. 95, 8 (1954)

    Article  ADS  Google Scholar 

  19. R. Blaauwgeers, M. Blazkova, M. Ĉloveĉko, V.B. Eltsov, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, D.E. Zmeev, J. Low Temp. Phys. 146, 537 (2007)

    Article  ADS  Google Scholar 

  20. J.J. Hosio, V.B. Eltsov, R. de Graaf, M. Krusius, J. Mäkinen, D. Schmoranzer, Phys. Rev. B 84, 224501 (2011)

    Article  ADS  Google Scholar 

  21. L. Pauling, E.B. Wilson, Introduction to Quantum Mechanics (McGraw-Hill, New York, 1935), p. 110

    Google Scholar 

  22. D.J. Cousins, S.N. Fisher, A.I. Gregory, G.R. Pickett, N.S. Shaw, Phys. Rev. Lett. 82, 4484 (1999)

    Article  ADS  Google Scholar 

  23. S.N. Fisher, A.M. Guénault, G.R. Pickett, P. Skyba, Physica B 329–333, 80 (2003)

    Article  Google Scholar 

  24. V.B. Eltsov, R. de Graaf, M. Krusius, D.E. Zmeev, J. Low Temp. Phys. 162, 212 (2011)

    Article  ADS  Google Scholar 

  25. E.V. Thuneberg, J. Low Temp. Phys. 122, 657 (2001)

    Article  ADS  Google Scholar 

  26. J. Kopu, J. Low Temp. Phys. 146, 47 (2007)

    Article  ADS  Google Scholar 

  27. S. Autti, V.B. Eltsov, G.E. Volovik, JETP Lett. 95, 544 (2012)

    Article  ADS  Google Scholar 

  28. A.J. Leggett, M.J. Rice, Phys. Rev. Lett. 20, 586 (1968)

    Article  ADS  Google Scholar 

  29. I.A. Fomin, JETP Lett. 30, 164 (1979)

    ADS  Google Scholar 

  30. A.V. Markelov, Yu.M. Mukharsky, Physica B 178, 202 (1992)

    Article  ADS  Google Scholar 

  31. E.R. Dobbs, Helium Three (Oxford University Press, London, 2000), p. 52

    Google Scholar 

  32. D. Rainer, J.W. Serene, Phys. Rev. B 13, 4745 (1976)

    Article  ADS  Google Scholar 

  33. S.B. Chung, S.-C. Zhang, Phys. Rev. Lett. 103, 235301 (2009)

    Article  ADS  Google Scholar 

  34. N.B. Kopnin, G.E. Volovik, Phys. Rev. B 57, 8526 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Yu.M. Bunkov, V.V. Dmitriev, P. Hunger, P. Skyba and G.E. Volovik for useful discussions. This work has been supported in part by the EU 7th Framework Programme (FP7/2007-2013, Grant No. 228464 Microkelvin) and by the Academy of Finland through its LTQ CoE grant (project no. 250280). P.J.H. and J.J.H. acknowledge financial support from the Väisälä Foundation of the Finnish Academy of Science and Letters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Heikkinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heikkinen, P.J., Autti, S., Eltsov, V.B. et al. Relaxation of Bose-Einstein Condensates of Magnons in Magneto-Textural Traps in Superfluid 3He-B. J Low Temp Phys 175, 3–16 (2014). https://doi.org/10.1007/s10909-013-0946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0946-y

Keywords

Navigation