Advertisement

Journal of Low Temperature Physics

, Volume 172, Issue 1–2, pp 47–58 | Cite as

Temperature and Frequency Dependent Dielectric Properties of Cu0.5Tl0.5Ba2Ca3(Cu4−y Cd y )O12−δ Bulk Superconductor

  • M. Rahim
  • Nawazish A. Khan
  • M. Mumtaz
Article

Abstract

The temperature and frequency dependent dielectric properties of polycrystalline Cd-doped Cu0.5Tl0.5Ba2Ca3(Cu4−y Cd y )O12−δ (y=0,0.25,0.5,0.75) bulk superconductor samples are investigated. The zero resistivity critical temperature {T c(R=0)} has decreased and normal state resistivity has increased with the increase of Cd-doping in Cu0.5Tl0.5Ba2Ca3(Cu4−y Cd y )O12−δ samples. The dielectric properties such as dielectric constants (ε′,ε″), dielectric loss tangent (tanδ) and ac-conductivity (σ ac ) are investigated by measuring the capacitance (C) and conductance (G) in the frequency range of 10 KHz to 10 MHz at different temperature from 80 K to 300 K. The negative capacitance (NC) is observed in all Cu0.5Tl0.5Ba2Ca3(Cu4−y Cd y )O12−δ samples. The large values of NC observed at lower frequencies and temperatures may be due to reduced thermal vibrations and enhanced polarizability of the material. The effect of Cd-doping on bulk properties, dc-resistivity (ρ) and ac-electrical conductivity (σ ac ) of these superconductor samples are investigated. The polarization in Cu0.5Tl0.5Ba2Ca3(Cu4−y Cd y )O12−δ samples is most likely arising from the displacement of charges in CuO2/CdO2 planes relative to the static charges at Ba2+, Tl3+, and Cu2+ sites in Cu0.5Tl0.5Ba2O4−δ charge reservoir layers by external applied field.

Keywords

Cu0.5Tl0.5Ba2Ca3(Cu4−yCdy)O12−δ superconductor Dielectric constant Polarization Capacitance Conductance 

References

  1. 1.
    C. Park, R.L. Synder, J. Am. Ceram. Soc. 78, 3171 (1995) CrossRefGoogle Scholar
  2. 2.
    N.A. Khan, M. Mumtaz, A.A. Khurram, J. Appl. Phys. 104, 033916 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    P. Ben Ishai, E. Sader, Yu. Feldman, I. Felner, M. Weger, J. Supercond. 18, 455 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    S. Cavdar, H. Koralay, N. Tugluoglu, A. Gunen, Supercond. Sci. Technol. 18, 1204 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    P.S. Prabhu, U.V. Varadaraju, Phys. Rev. B 53, 14637 (1996) and references therein ADSCrossRefGoogle Scholar
  6. 6.
    L.L. Hench, J.L. West, Principles of Electronic Ceramics (Willey, New York, 1990) Google Scholar
  7. 7.
    I.G. Kaplan, J. Soullard, J. Hernandez-Cobos, Phys. Rev. B 65, 214509 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    Y. Fukuzumi, K. Mizuhashi, S. Ushida, Phys. Rev. B 61, 627 (2000) ADSCrossRefGoogle Scholar
  9. 9.
    V.N. Vieira, P. Pureur, J. Schaf, Phys. Rev. B 66, 224506 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    J. Werner, A.F.J. Levi, R.T. Tung, M. Anzlowar, M. Pinto, Phys. Rev. Lett. 60, 53 (1988) ADSCrossRefGoogle Scholar
  11. 11.
    B.K. Jones, J. Santana, M. McPherson, Solid State Commun. 107, 47 (1988) CrossRefGoogle Scholar
  12. 12.
    E. Arslan, Y. Safak, Ş. Altmdal, Ö Kelekçi, E. Özbay, J. Non-Cryst. Solids 306, 1006 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    C.C. Wang, G.Z. Liu, M. He, H.B. Lu, Appl. Phys. Lett. 92, 052905 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    A.G.U. Perera, W.Z. Shen, M. Ershov, H.C. Liu, M. Buchanan, W.J. Schaff, Appl. Phys. Lett. 74, 3167 (1999) ADSCrossRefGoogle Scholar
  15. 15.
    R. Gharbi, M. Abdelkrim, M. Fathllah, E. Tresso, S. Ferrero, C.F. Piri, T. Mohamed Brahim, Solid-State Electron. 50, 367 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    L.F. Feng, D. Li, C.Y. Zhu, C.D. Wang, H.X. Cong, X.S. Xie, C.Z. Lu, J. Appl. Phys. 102, 063102 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    C.Y. Zhu, L.F. Feng, C.D. Wang, H.X. Cong, G.Y. Zhang, Z.J. Yang, Z.Z. Chen, Solid-State Electron. 53, 324 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    R. Vogel, P. Walsh, J. Appl. Phys. 216, 14 (1969) Google Scholar
  19. 19.
    S.H. Zahid, A.K. Jonscher, Supercond. Sci. Technol. 2, 587 (1987) Google Scholar
  20. 20.
    W. Van Roosbroeck, Phys. Rev. Lett. 28, 1120 (1972) ADSCrossRefGoogle Scholar
  21. 21.
    E. Ehrenfreund, C. Lungenschmied, G. Dennler, H. Neugebauer, N.S. Sariciftci, Appl. Phys. Lett. 91, 012112 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    C. Lungenschmied, E. Ehrenfreund, N.S. Sariciftci, Org. Electron. 10, 115 (2009) CrossRefGoogle Scholar
  23. 23.
    J. Konopka, R. Jose, M. Wołcyrz, Physica C 435, 53 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    M. Ershov, H.C. Liu, L. Li, M. Buchanan, Z.R. Wasileweki, V. Ryzhii, Appl. Phys. Lett. 70, 1828 (1997) ADSCrossRefGoogle Scholar
  25. 25.
    N.C. Chen, P.Y. Wang, J.F. Chen, Appl. Phys. Lett. 72, 1081 (1998) ADSCrossRefGoogle Scholar
  26. 26.
    J. Allison, V.R. Dave, Electron. Lett. 7, 706 (1971) CrossRefGoogle Scholar
  27. 27.
    F. Lemmi, N.M. Johnson, Appl. Phys. Lett. 74, 251 (1999) ADSCrossRefGoogle Scholar
  28. 28.
    B.S. Doyle, J. Phys. D 19, 1129 (1986) ADSCrossRefGoogle Scholar
  29. 29.
    M. Ilyas, M. Zulfequar, M. Husain, Physica B 271, 125 (1999) ADSCrossRefGoogle Scholar
  30. 30.
    A.G.U. Perera, W.Z. Shen, M. Ershov, H.C. Liu, M. Buchanan, W.J. Schaff, Appl. Phys. Lett. 74, 3167 (1999) ADSCrossRefGoogle Scholar
  31. 31.
    M. Ershov, H.C. Liu, L. Li, M. Buchanan, Z.R. Wasileweki, A.K. Jonscjer, IEEE Trans. Electron Devices 45, 2196 (1998) ADSCrossRefGoogle Scholar
  32. 32.
    G.B. Parravicini, A. Stella, M.C. Ungureanu, R. Kofman, Appl. Phys. Lett. 85, 302 (2004) ADSCrossRefGoogle Scholar
  33. 33.
    N.A. Penin, Semiconductors 30, 340 (1996) ADSGoogle Scholar
  34. 34.
    A.K. Jonscher, J. Chem. Soc. Faraday Trans. 2(82), 75 (1986) Google Scholar
  35. 35.
    M. Beale, P. Mackay, Philos. Mag. B 65, 47 (1992) CrossRefGoogle Scholar
  36. 36.
    J. Bisquert, G. Garcia-Belmonte, A. Pitarch, H.J. Bolink, Chem. Phys. Lett. 422, 184 (2006) ADSCrossRefGoogle Scholar
  37. 37.
    X. Xu, Z. Jiao, M. Fu, L. Feng, K. Xu, R. Zuo, X. Chen, Physica C 417, 166 (2005) ADSCrossRefGoogle Scholar
  38. 38.
    R.K. Nkum, M.O. Gyekye, F. Boakye, Solid State Commun. 122, 569 (2002) ADSCrossRefGoogle Scholar
  39. 39.
    S. Cavdar, H. Koralay, S. Altmdal, J. Low Temp. Phys. 164, 102 (2011) ADSCrossRefGoogle Scholar
  40. 40.
    J.B. Shi, Y. Hsu, C.T. Lin, Physica C 299, 272 (1998) ADSCrossRefGoogle Scholar
  41. 41.
    M.S. Vijaya, G. Rangarajan, Materials Science, 1st edn. (Tata McGraw-Hill, New Delhi, 2004) Google Scholar
  42. 42.
    M. Mumtaz, N.A. Khan, S. Khan, J. Appl. Phys. 111, 013920 (2012) ADSCrossRefGoogle Scholar
  43. 43.
    M. Mumtaz, N.A. Khan, Physica C 469, 728 (2009) ADSCrossRefGoogle Scholar
  44. 44.
    M. Mumtaz, N.A. Khan, Physica C 469, 182 (2009) ADSCrossRefGoogle Scholar
  45. 45.
    P. Badica, A. Iyo, A. Crisan, Y. Ishiura, A. Sudaresan, H. Ihara, Supercond. Sci. Technol. 15, 964 (2002) ADSCrossRefGoogle Scholar
  46. 46.
    G. Xiao, A. Bakhshi, M.Z. Cieplak, Z. Tesanovic, C.L. Chien, Phys. Rev. B 39, 315 (1989) ADSCrossRefGoogle Scholar
  47. 47.
    M. Mumtaz, N.A. Khan, Physica B 404, 3973 (2009) ADSCrossRefGoogle Scholar
  48. 48.
    N.A. Khan, M. Rahim, J. Alloys Compd. 481, 81 (2009) CrossRefGoogle Scholar
  49. 49.
    M. Rahim, N.A. Khan, J. Alloys Compd. 513, 55 (2012) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Materials Science Laboratory, Department of PhysicsQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Materials Research Laboratory, Department of Physics, FBASInternational Islamic University (IIU)IslamabadPakistan

Personalised recommendations