Advertisement

Journal of Low Temperature Physics

, Volume 171, Issue 5–6, pp 808–817 | Cite as

Correlation Between Band Structure and Magneto- Transport Properties in HgTe/CdTe Two-Dimensional Far-Infrared Detector Superlattice

  • M. Braigue
  • A. Nafidi
  • A. Idbaha
  • H. Chaib
  • H. Sahsah
  • M. Daoud
  • B. Marí Soucase
  • M. Mollar García
  • K. Chander Singh
  • B. Hartiti
Article

Abstract

Theoretical calculations of the electronic properties of n-type HgTe/CdTe superlattices (SLs) have provided an agreement with the experimental data on the magneto-transport behaviour. We have measured the conductivity, Hall mobility, Seebeck and Shubnikov-de Haas effects and angular dependence of the magneto-resistance. Our sample, grown by MBE, had a period d=d 1+d 2 (124 layers) of \(d_{1}=8.6~\mathrm{nm}~\mathrm{(HgTe)} /d_{2}=3.2~\mathrm{nm}~\mathrm{(CdTe)}\). Calculations of the spectras of energy E(d 2), E(k z ) and E(k p ), respectively, in the direction of growth and in plane of the superlattice; were performed in the envelope function formalism. The energy E(d 2,Γ,4.2 K), shown that when d 2 increase the gap E g decrease to zero at the transition semiconductor to semimetal conductivity behaviour and become negative accusing a semimetallic conduction. At 4.2 K, the sample exhibits n type conductivity, confirmed by Hall and Seebeck effects, with a Hall mobility of \(2.5 \times 10^{5}~\mathrm{cm}^{2}/ \mathrm{V\,s}\). This allowed us to observe the Shubnikov-de Haas effect with n=3.20×1012 cm−2. Using the calculated effective mass (\(m^{*}_{E1}(E_{F}) = 0.05 m_{0}\)) of the degenerated electrons gas, the Fermi energy (2D) was E F =88 meV in agreement with 91 meV of thermoelectric power α. In intrinsic regime, αT −3/2 and R H T 3/2 indicates a gap E g =E 1HH 1=101 meV in agreement with calculated E g (Γ,300 K)=105 meV. The formalism used here predicts that the system is semiconductor for d 1/d 2=2.69 and d 2<100 nm. Here, d 2=3.2 nm and E g (Γ,4.2 K)=48 meV so this sample is a two-dimensional modulated nano-semiconductor and far-infrared detector (12 μm<λ c <28 μm).

Keywords

Theoretical band structure in the envelope function formalism Magneto-transport measurements Narrow gap nano-semiconductor Two-dimensional electronic system Far-infrared detector HgTe/CdTe superlattices 

References

  1. 1.
    L. Esaki, R. Tsu, IBM J. Res. Dev. 61–65 (1970) Google Scholar
  2. 2.
    R. Dingle, A.C. Gossard, W. Wiegmann, Phys. Rev. Lett. 34, 1327–1330 (1975) ADSCrossRefGoogle Scholar
  3. 3.
    H. Sakaki, L.L. Chang, G.A. Sai-Halasz, C.A. Chang, L. Esaki, Solid State Commun. 26(9), 589–592 (1978) ADSCrossRefGoogle Scholar
  4. 4.
    G. Bastard, Phys. Rev. B 25, 7584–7597 (1982) ADSCrossRefGoogle Scholar
  5. 5.
    J. Tuchendler, M. Grynberg, Y. Couder, H. Thomé, R. Le Toullec, Phys. Rev. B 8, 3884–3894 (1973) ADSCrossRefGoogle Scholar
  6. 6.
    Ab. Nafidi, A. El Kaaouachi, H. Sahsah, Ah. Nafidi, in Book of Abstracts of the International Conference on Theoretical Physics (HT 2002), Paris, France, 22–27 July (2002), pp. 274–275 Google Scholar
  7. 7.
    A. Nafidi, A. El Kaaouachi, A. Nafidi, J.P. Faurie, A. Million, J. Piaguet, Phys. Status Solidi B 229(1/2), 573–576 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    N.F. Johnson, P.M. Hui, H. Ehrenreich, Phys. Rev. Lett. 61, 1993–1995 (1988) ADSCrossRefGoogle Scholar
  9. 9.
    E.O. Kane, J. Phys. Chem. Solids 1(4), 249–261 (1957) ADSCrossRefGoogle Scholar
  10. 10.
    M.H. Weiler, in Semiconductors and Semimetals, vol. 16, ed. by R.K. Willardson, A.C. Beer (Academic Press, New York, 1981), p. 119 Google Scholar
  11. 11.
    C. Kittel, Introduction to Solid State Physics, 3rd edn. (Wiley, New York, 2001), p. 333 Google Scholar
  12. 12.
    K. Seeger, in Semiconductor Physics: An Introduction, 8th edn. (Springer, Berlin, 2002), pp. 1–159. ISBN: 9783540438137, Chap. 6 Google Scholar
  13. 13.
    G.L. Hansen, J.L. Schmit, T.N. Casselman, J. Appl. Phys. 53, 7099–7101 (1982) ADSCrossRefGoogle Scholar
  14. 14.
    M. Braigue, A. Nafidi, Y. Benlaabidya, H. Chaib, A. Daddabi, R. Morghi, A. Idbaha, M. Massaq, T. El Gouti, J. Hemine, M. Srinivasa Vinod, J. Supercond. Nov. Magn. (2011). doi: 10.1007/s10948-011-1229-y Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • M. Braigue
    • 1
  • A. Nafidi
    • 1
  • A. Idbaha
    • 1
  • H. Chaib
    • 1
  • H. Sahsah
    • 1
  • M. Daoud
    • 1
  • B. Marí Soucase
    • 2
  • M. Mollar García
    • 2
  • K. Chander Singh
    • 3
  • B. Hartiti
    • 4
  1. 1.Laboratory of Condensed Matter Physics and Nanomaterials for Renewable EnergyUniversity Ibn ZohrAgadirMorocco
  2. 2.Laboratory of OptoelectronicsUniversitat Politècnica de ValènciaValenciaSpain
  3. 3.Department of ChemistryM.D. UniversityRohtakIndia
  4. 4.Laboratoire of Physics of Materials and Application to Renewable EnergyPhysics DepartmentMohammédiaMorocco

Personalised recommendations