Advertisement

Journal of Low Temperature Physics

, Volume 171, Issue 1–2, pp 77–86 | Cite as

Theoretical Study on the Spin-State Transition of Electron-Doped Sr2−x La x CoO4 Compounds

  • Xiu’e Zhang
  • Yonggang Kang
Article

Abstract

The spin-state transition is an interesting and unresolved problem in layered perovskite Sr2−x La x CoO4 under doping. The unrestricted Hartree-Fock approximation on a realistic multiband lattice model has been applied to study the various spin states of electron-doped Sr2−x La x CoO4 compounds. In the doping range 0.0≤x≤0.9, various spin states in an enlarged double cell are investigated and four of them are the ground states at different doping concentration. The magnetic ground state of the doped system takes a low-spin–intermediate-spin ferromagnetically ordered state for x<0.26, a high-spin–intermediate-spin ferromagnetically ordered state for 0.26≤x<0.47, an intermediate-spin state for 0.47≤x<0.65, and followed by an high-spin antiferromagnetically ordered state for 0.65≤x≤0.9. The densities of states of all magnetic ground states are computed and their electronic and magnetic properties are discussed.

Keywords

Recursion method Hartree–Fock approximation Density of state Doping concentration Layered perovskite Magnetic ground state 

Notes

Acknowledgements

This work is supported by Teachers’ Scientific Research Fund of China Earthquake Administration (20120121). We are very grateful to Professor Aimin Sun for kindly offering his advice.

References

  1. 1.
    V.G. Bhide, D.S. Rajoria, V.G. Jadhao, G. Rama Rao, C.N.R. Rao, Phys. Rev. B 12, 2832 (1975) ADSCrossRefGoogle Scholar
  2. 2.
    V. Golovanov, L. Mihaly, A.R. Moodenbaugh, Phys. Rev. B 53, 8207 (1996) ADSCrossRefGoogle Scholar
  3. 3.
    P. Ravindran, P.A. Korzhavyi, H. Fjellvag, A. Kjekshus, Phys. Rev. B 60(16), 423 (1999) Google Scholar
  4. 4.
    A. Chainani, M. Mathew, D.D. Sarma, Phys. Rev. B 46, 9976 (1992) ADSCrossRefGoogle Scholar
  5. 5.
    Q. Zhang, W. Zhang, Phys. Rev. B 68, 184403 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    Q. Zhang, X. Huang, W. Zhang, A. Hu, J. Appl. Phys. 95, 6822 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    A. Sun, X. Zhang, Physica B, Condens. Matter 403, 1927 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    Y. Furukawa, S. Wada, Y. Yamada, J. Phys. Soc. Jpn. 62, 1127 (1993) ADSCrossRefGoogle Scholar
  9. 9.
    J. Wang, Y.C. Tao, W. Zhang, D.Y. Xing, J. Phys. Condens. Matter 12, 7425 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    H. Wu, T. Burnus, Phys. Rev. B 80, 081105 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    C.F. Chang, Z. Hu, H. Wu, T. Burnus, N. Hollmann, M. Benomar, T. Lorenz, A. Tanaka, H.-J. Lin, H.H. Hsieh, C.T. Chen, L.H. Tjeng, Phys. Rev. Lett. 102, 116401 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    T. Jia, H. Wu, G. Zhang, X. Zhang, Y. Guo, Z. Zeng, H.Q. Lin, Phys. Rev. B 82, 205107 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    H. Wu, Phys. Rev. B 81, 115127 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    J. Wang, W. Zhang, D.Y. Xing, Phys. Rev. B 62, 14140 (2000) ADSCrossRefGoogle Scholar
  15. 15.
    C. Tealdi, C. Ferrara, L. Malavasi, P. Mustarelli, C. Ritter, G. Chiodelli, Y.A. Diaz-Fernandez, Phys. Rev. B 82, 174118 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    P. Babkevich, D. Prabhakaran, C.D. Frost, A.T. Boothroyd, Phys. Rev. B 82, 184425 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    N. Hollmann, M.W. Haverkort, M. Benomar, M. Cwik, M. Braden, T. Lorenz, Phys. Rev. B 83, 174435 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    M. Merz, D. Fuchs, A. Assmann, S. Uebe, H.v. Löhneysen, P. Nagel, S. Schuppler, Phys. Rev. B 84, 014436 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    H. Wu, Phys. Rev. B 86, 075120 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    X.L. Wang, E. Takayama-Muromachi, Phys. Rev. B 72, 064401 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    T. Mizokawa, A. Fujimori, Phys. Rev. B 53, R4201 (1996) ADSCrossRefGoogle Scholar
  22. 22.
    T. Mizokawa, A. Fujimori, Phys. Rev. B 54, 5368 (1996) ADSCrossRefGoogle Scholar
  23. 23.
    T. Mizokawa, A. Fujimori, Phys. Rev. B 51(12), 880 (1995) Google Scholar
  24. 24.
    J.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954) ADSMATHCrossRefGoogle Scholar
  25. 25.
    V. Heine, R. Haydock, M.J. Kelly, in Solid State Physics: Advances in Research and Applications, vol. 35, ed. by H. Ehrenreich, F. Seitz, D. Turnbull (Academic Press, New York, 1980), p. 215 Google Scholar
  26. 26.
    R. Haydock, C.M.M. Nex, J. Phys. C 17, 4783 (1984) ADSCrossRefGoogle Scholar
  27. 27.
    M. Zhang, W. Zhang, N. Ming, Phys. Rev. B 57, 10705 (1997) ADSCrossRefGoogle Scholar
  28. 28.
    T. Matsuura, T. Tabuchi, J. Mizusaki, S. Yamauchi, K. Fueki, J. Phys. Chem. Solids 49, 1409 (1988) ADSCrossRefGoogle Scholar
  29. 29.
    W.A. Harrison, Electronic Structure and the Properties of Solids (W.H. Freeman, San Francisco, 1980), p. 27 Google Scholar
  30. 30.
    K. Yamada, M. Matsuda, Y. Endoh, B. Keimer, R.J. Birgeneau, S. Onodera, J. Mizusaki, T. Matsuura, G. Shirane, Phys. Rev. B 39, 2336 (1989) ADSCrossRefGoogle Scholar
  31. 31.
    J. Matsuno, Y. Okimoto, Z. Fang, X.Z. Yu, Y. Matsui, N. Nagaosa, H. Kumigashira, M. Oshima, M. Kawasaki, Y. Tokura, Thin Solid Films 486, 113 (2005) ADSCrossRefGoogle Scholar
  32. 32.
    S.K. Pandey, Phys. Rev. B 81, 035114 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    Y. Shimada, S. Miyasaka, R. Kumai, Y. Tokura, Phys. Rev. B 73, 134424 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Institute of Disaster PreventionSanheChina

Personalised recommendations