Skip to main content
Log in

Superfluid Phase Transition and Strong-Coupling Effects in an Ultracold Fermi Gas with Mass Imbalance

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate the superfluid phase transition and effects of mass imbalance in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover regime of an cold Fermi gas. We point out that the Gaussian fluctuation theory developed by Nozières and Schmitt-Rink and the T-matrix theory, that are now widely used to study strong-coupling physics of cold Fermi gases, give unphysical results in the presence of mass imbalance. To overcome this problem, we extend the T-matrix theory to include higher-order pairing fluctuations. Using this, we examine how the mass imbalance affects the superfluid phase transition. Since the mass imbalance is an important key in various Fermi superfluids, such as 40K-6Li Fermi gas mixture, exciton condensate, and color superconductivity in a dense quark matter, our results would be useful for the study of these recently developing superfluid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The key to overcome the breakdown of TMA in the spin-polarized case is that, when the full Green’s function G is used in the fermion loop as shown in Fig. 1(b), the RPA-type series of spin fluctuations are correctly taken into account [17]. In TMA, where the bare Green’s function G 0 is used for the fermion loop, the RPA series is truncated, leading to the unphysical non-positive-definite susceptibility. The so-called GG 0-theory also uses G 0 in the fermion loop (although G is partially used in the ladder diagram), so that it does not include spin fluctuations within RPA. Since the self-consistent T-matrix theory (GG-theory) [20] uses Fig. 1(b)-type self-energy, it can be also applicable to the spin-polarized system, as well as the mass-imbalanced system, as ETMA.

References

  1. C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004)

    Article  ADS  Google Scholar 

  2. S. Giorgini et al., Rev. Mod. Phys. 80, 1215 (2008)

    Article  ADS  Google Scholar 

  3. I. Bloch et al., Rev. Mod. Phys. 80, 885 (2008). and references are therein

    Article  ADS  Google Scholar 

  4. G. Sarma, J. Phys. Chem. Solids 24, 1029 (1963)

    Article  ADS  Google Scholar 

  5. J.E. Baarsma, K.B. Gubbels, H.T.C. Stoof, Phys. Rev. A 82, 013624 (2010)

    Article  ADS  Google Scholar 

  6. K. Yoshioka, E. Chae, M. Kuwata-Gonokami, Nat. Commun. 2, 328 (2011)

    Article  Google Scholar 

  7. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature 443, 409–414 (2006)

    Article  ADS  Google Scholar 

  8. B.C. Barrois, Nucl. Phys. B 129, 390 (1977)

    Article  ADS  Google Scholar 

  9. S.C. Frautschi, in Hadronic Matter at Extreme Energy Density, ed. by N. Cabibbo, L. Sertorio (Plenum, New York, 1980)

    Google Scholar 

  10. D. Bailin, A. Love, Phys. Rep. 107, 325 (1984)

    Article  ADS  Google Scholar 

  11. M. Taglieber, A.-C. Voigt, T. Aoki, T.W. Hänsch, K. Dieckmann, Phys. Rev. Lett. 100, 010401 (2008)

    Article  ADS  Google Scholar 

  12. P. Nozières, S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985)

    Article  ADS  Google Scholar 

  13. D. Rohe, W. Metzner, Phys. Rev. B 63, 224509 (2001)

    Article  ADS  Google Scholar 

  14. A. Perali, P. Pieri, G.C. Strinati, C. Castellani, Phys. Rev. B 66, 024510 (2002)

    Article  ADS  Google Scholar 

  15. S. Tsuchiya, R. Watanabe, Y. Ohashi, Phys. Rev. A 80, 033613 (2009)

    Article  ADS  Google Scholar 

  16. D.J. Thouless, Ann. Phys. (N.Y.) 10, 553 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. T. Kashimura, R. Watanabe, Y. Ohashi. arXiv:1207.2570

  18. X.-J. Liu, H. Hu, Europhys. Lett. 75, 364 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  19. M.M. Parish, F.M. Marchetti, A. Lamacraft, B.D. Simons, Nat. Phys. 3, 124 (2007)

    Article  Google Scholar 

  20. R. Haussmann, Phys. Rev. B 49, 12975 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Watabe and Y. Endo for useful discussions. This work was partially supported by Institutional Program for Young Researcher Oversea Visits from the Japan Society for the Promotion of Science. Y.O. was supported by Grant-in-Aid for Scientific research from MEXT in Japan (22540412, 23104723, 23500056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hanai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanai, R., Kashimura, T., Watanabe, R. et al. Superfluid Phase Transition and Strong-Coupling Effects in an Ultracold Fermi Gas with Mass Imbalance. J Low Temp Phys 171, 389–396 (2013). https://doi.org/10.1007/s10909-012-0738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0738-9

Keywords

Navigation