Advertisement

Journal of Low Temperature Physics

, Volume 171, Issue 5–6, pp 526–538 | Cite as

Vortex Dynamics: Quantum Versus Classical Regimes

  • L. Thompson
  • P. C. E. Stamp
Article
  • 185 Downloads

Abstract

For many years the classical Hall-Vinen-Iordanski (HVI) equation has been used to analyse vortex dynamics in superfluids. Here we discuss the extension of the theory of vortex dynamics to the quantum regime, in which the characteristic vortex frequency is higher than the temperature. At the same time we justify, in the low-frequency classical regime, the use of the HVI equation, provided an inertial mass term and a noise fluctuation term are added to it. The crossover to the quantum regime is discussed, and an intuitive picture is given of the vortex dynamics, which in general is described by 2 equations (one for the vortex coordinate, and one for its quantum fluctuations); we also discuss the simple equation of motion found in the extreme quantum regime.

Keywords

Superfluid vortex dynamics 

Notes

Acknowledgements

This work was supported by funding from NSERC, from PITP, and from CIFAR. The work benefited greatly from discussions at various times with (and encouragement from) David Thouless; we also thank Bill Unruh and Gordon Semenoff for useful comments.

References

  1. 1.
    W.F. Vinen, Nature 181, 1524 (1958) ADSCrossRefGoogle Scholar
  2. 2.
    H.E. Hall, W.F. Vinen, Proc. R. Soc. A 238, 204, 215 (1956) Google Scholar
  3. 3.
    S.V. Iordanskii, Ann. Phys. 29, 335 (1964) ADSCrossRefGoogle Scholar
  4. 4.
    D.J. Thouless, J.R. Anglin, Phys. Rev. Lett. 99, 105301 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    D.J. Thouless, P. Ao, Q. Niu, Phys. Rev. Lett. 76, 3758 (1996) ADSCrossRefGoogle Scholar
  6. 6.
    E.B. Sonin, Phys. Rev. B 55, 485 (1997) ADSCrossRefGoogle Scholar
  7. 7.
    A.L. Fetter, Phys. Rev. 136, A1488 (1964) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    C. Wexler, D.J. Thouless, Phys. Rev. B 58, R8897 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    M. Stone, Phys. Rev. B 61, 11780 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    L. Thompson, P.C.E. Stamp, Phys. Rev. Lett. 108, 184501 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    D.J. Thouless et al., Phys. Rev. B 63, 224504 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    L. Thompson, P.C.E. Stamp, in preparation Google Scholar
  13. 13.
    L. Thompson, PhD thesis, University of British Columbia (2011) Google Scholar
  14. 14.
    R. Rajaraman, Solitons and Instantons (Elsevier, Amsterdam, 1987) MATHGoogle Scholar
  15. 15.
    T.D. Lee, Particle Physics and Introduction to Field Theory (Harwood Academic, Reading, 1981). Ch. 7 Google Scholar
  16. 16.
    O. Penrose, L. Onsager, Phys. Rev. 104, 576 (1956) ADSMATHCrossRefGoogle Scholar
  17. 17.
    C.N. Yang, Rev. Mod. Phys. 34, 694 (1962) ADSCrossRefGoogle Scholar
  18. 18.
    J.S. Langer, Phys. Rev. 167, 183 (1968) ADSCrossRefGoogle Scholar
  19. 19.
    M.P. Mattis, M. Karliner, Phys. Rev. D 31, 2833 (1985) ADSCrossRefGoogle Scholar
  20. 20.
    N. Dorey, J. Hughes, M.P. Mattis, Phys. Rev. D 49, 3598 (1994) ADSCrossRefGoogle Scholar
  21. 21.
    B.M.A.G. Piette, B.J. Schroers, W.J. Zakrzevski, Nucl. Phys. B 439, 205 (1995) ADSMATHCrossRefGoogle Scholar
  22. 22.
    A.L. Fetter, Phys. Rev. 186, 128 (1969) ADSCrossRefGoogle Scholar
  23. 23.
    P. Ao, D.J. Thouless, Phys. Rev. Lett. 72, 132 (1994) ADSCrossRefGoogle Scholar
  24. 24.
    Q. Niu, P. Ao, D.J. Thouless, Phys. Rev. Lett. 72, 1706 (1994) ADSCrossRefGoogle Scholar
  25. 25.
    R.P. Feynman, F.L. Vernon, Ann. Phys. 24, 118 (1963) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    A.O. Caldeira, A.J. Leggett, Ann. Phys. 149, 374 (1983) ADSCrossRefGoogle Scholar
  27. 27.
    T. Cox, P.C.E. Stamp, J. Low Temp. Phys. (2012). doi: 10.1007/s10909-012-0731-3 this issue

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Physics and Astronomy, Pacific Institute of Theoretical PhysicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations