Advertisement

Journal of Low Temperature Physics

, Volume 170, Issue 3–4, pp 166–171 | Cite as

Anisotropic Quantum Hall Liquids at Intermediate Magnetic Fields

  • Orion Ciftja
  • Chidera Ozurumba
  • Francis Ujeyah
Article
  • 100 Downloads

Abstract

The observation of significant magnetoresistance anisotropy of a two-dimensional electronic system in very clean GaAs/AlGaAs heterostructure samples in presence of moderately large perpendicular magnetic fields is a striking example of novel anisotropic behavior in the quantum Hall regime. Anisotropy appears to be the strongest at quantum Hall even-denominator filled states for filling factors ν>4 where several Landau levels are occupied. A possible explanation of these findings is due to the existence of charge density waves that are known to cause interesting phase transitions at high Landau levels. An alternative explanation of this phenomenon is to argue that the strongly correlated electronic system has stabilized in an orientationally ordered anisotropic quantum Hall liquid state. Quantum Monte Carlo calculations with a translationally invariant wave function in which rotation symmetry is broken indicate that this might be the case.

Keywords

Quantum Hall effect(s) Two-dimensional electronic system Strongly correlated electronic system Landau levels 

Notes

Acknowledgements

This research was supported in part by the National Science Foundation under NSF Grant No. DMR-1104795.

References

  1. 1.
    K. von Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980) ADSCrossRefGoogle Scholar
  2. 2.
    O. Ciftja, J. Math. Phys. 52, 122105 (2011) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    D.C. Tsui, H.L. Stormer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982) ADSCrossRefGoogle Scholar
  4. 4.
    R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983) ADSCrossRefGoogle Scholar
  5. 5.
    J.K. Jain, Phys. Rev. Lett. 63, 199 (1989) ADSCrossRefGoogle Scholar
  6. 6.
    O. Ciftja, Physica E 9, 226 (2001) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    O. Ciftja, Eur. Phys. J. B 13, 671 (2000) ADSCrossRefGoogle Scholar
  8. 8.
    B.I. Halperin, P.A. Lee, N. Read, Phys. Rev. B 47, 7312 (1983) ADSCrossRefGoogle Scholar
  9. 9.
    M.P. Lilly, K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 82, 394 (1999) ADSCrossRefGoogle Scholar
  10. 10.
    M.M. Fogler, A.A. Koulakov, B.I. Shklovskii, Phys. Rev. B 54, 1853 (1996) ADSCrossRefGoogle Scholar
  11. 11.
    R. Moessner, J.T. Chalker, Phys. Rev. B 54, 5006 (1996) ADSCrossRefGoogle Scholar
  12. 12.
    E. Fradkin, S.A. Kivelson, Phys. Rev. B 59, 8065 (1999) ADSCrossRefGoogle Scholar
  13. 13.
    V. Oganesyan, S.A. Kivelson, E. Fradkin, Phys. Rev. B 64, 195109 (2001) ADSCrossRefGoogle Scholar
  14. 14.
    Q.M. Doan, E. Manousakis, Phys. Rev. B 75, 195433 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    O. Ciftja, C. Wexler, Phys. Rev. B 65, 205307 (2002) ADSCrossRefGoogle Scholar
  16. 16.
    C. Wexler, O. Ciftja, Int. J. Mod. Phys. B 20, 747 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    O. Ciftja, C. Wexler, Physica B 403, 1511 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    E. Rezayi, N. Read, Phys. Rev. Lett. 72, 900 (1994) ADSCrossRefGoogle Scholar
  19. 19.
    O. Ciftja, Europhys. Lett. 74, 486 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    G. Murthy, R. Shankar, Rev. Mod. Phys. 75, 1101 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    O. Ciftja, J. Quintanilla, J. Low Temp. Phys. 159, 189 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    O. Ciftja, Contrib. Plasma Phys. 51, 401 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    R. Morf, B.I. Halperin, Phys. Rev. B 33, 2221 (1986) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Orion Ciftja
    • 1
  • Chidera Ozurumba
    • 1
  • Francis Ujeyah
    • 1
  1. 1.Department of PhysicsPrairie View A&M UniversityPrairie ViewUSA

Personalised recommendations