Advertisement

Journal of Low Temperature Physics

, Volume 170, Issue 1–2, pp 43–59 | Cite as

Relaxation Rates and Collision Integrals for Bose-Einstein Condensates

  • Erich D. Gust
  • L. E. Reichl
Article

Abstract

Near equilibrium, the rate of relaxation to equilibrium and the transport properties of excitations (bogolons) in a dilute Bose-Einstein condensate (BEC) are determined by three collision integrals, Open image in new window , Open image in new window , and Open image in new window . All three collision integrals conserve momentum and energy during bogolon collisions, but only Open image in new window conserves bogolon number. Previous works have considered the contribution of only two collision integrals, Open image in new window and Open image in new window . In this work, we show that the third collision integral Open image in new window makes a significant contribution to the bogolon number relaxation rate and needs to be retained when computing relaxation properties of the BEC. We provide values of relaxation rates in a form that can be applied to a variety of dilute Bose-Einstein condensates.

Keywords

Bose-Einstein condensate Kinetic equation Collision integral Relaxation 

Notes

Acknowledgements

The authors wish to thank the Robert A. Welch Foundation (Grant No. F-1051) for support of this work.

References

  1. 1.
    C. Cercignani, Theory and Application of the Boltzmann Equation (Elsevier, New York, 1975) MATHGoogle Scholar
  2. 2.
    E.D. Gust, L.E. Reichl, Phys. Rev. E 79, 031202 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    L.E. Reichl, A Modern Course in Statistical Physics, (Wiley-VCH, Mannheim, 2009) Google Scholar
  4. 4.
    E.A. Uehling, G.E. Uhlenbeck, Phys. Rev. 43, 552 (1933) ADSCrossRefGoogle Scholar
  5. 5.
    E.D. Gust, L.E. Reichl, Phys. Rev. E 81, 061202 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    T.R. Kirkpatrick, J.R. Dorfman, J. Low Temp. Phys. 58, 301 (1985) ADSCrossRefGoogle Scholar
  7. 7.
    T.R. Kirkpatrick, J.R. Dorfman, J. Low Temp. Phys. 58, 399 (1985) ADSCrossRefGoogle Scholar
  8. 8.
    T.R. Kirkpatrick, J.R. Dorfman, J. Low Temp. Phys. 59, 1 (1985) ADSCrossRefGoogle Scholar
  9. 9.
    M.J. Bijlsma, E. Zaremba, H.T.C. Stoof, Phys. Rev. A 62, 063609 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    E. Zaremba, T. Nikuni, A. Griffin, J. Low Temp. Phys. 116, 277 (1999) CrossRefGoogle Scholar
  11. 11.
    A. Griffin, T. Nikuni, E. Zaremba, Bose-Condensed Gases at Finite Temperatures (Cambridge University Press, Cambridge, 2009) MATHCrossRefGoogle Scholar
  12. 12.
    E.D. Gust, L.E. Reichl, e-print arXiv:1202.3418 (2012)
  13. 13.
    P.B. Blakie, A.S. Bradley, M.J. Davis, R.J. Ballagh, C.W. Gardiner, Adv. Phys. 57, 363 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (Dover, New York, 2003), pp. 314–319 Google Scholar
  15. 15.
    E.A. Frieman, J. Math. Phys. 4, 410 (1963) MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    S. Peletminskii, A. Yatsenko, Sov. Phys. JETP 26, 773 (1968) ADSGoogle Scholar
  17. 17.
    A.I. Akhiezer, S.V. Peletminskii, Methods of Statistical Physics (Pergamon, Oxford, 1981) Google Scholar
  18. 18.
    I. Kuščer, M.M.R. Williams, Phys. Fluids 10, 1922 (1967) ADSCrossRefGoogle Scholar
  19. 19.
    V.N. Popov, Functional Integrals and Collective Modes (Cambridge University Press, New York, 1987) Google Scholar
  20. 20.
    R.J. Dodd, M. Edwards, C.W. Clark, K. Burnett, Phys. Rev. A 57, R32 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    D.A. Hutchinson, E. Zaremba, A. Griffin, Phys. Rev. Lett. 78, 1842 (1997) ADSCrossRefGoogle Scholar
  22. 22.
    K. Burnett in Bose-Einstein Condensation in Atomic Gases, ed. by M. Inguscio, S. Stringari, C.E. Wieman (IOS Press, Washington, D.C., 1999), pp. 273–283 Google Scholar
  23. 23.
    S.A. Gardiner, S.A. Morgan, Phys. Rev. A 75, 043621 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    M.H. Anderson, J.R. Ensher, M.R. Mathews, C.E. Weiman, E.A. Cornell, Science 269, 198 (1995) ADSCrossRefGoogle Scholar
  25. 25.
    D.J. Heinzen in Bose-Einstein Condensation in Atomic Gases, ed. by M. Inguscio, S. Stringari, C.E. Wieman (IOS Press, Washington, D.C., 1999), p. 385 Google Scholar
  26. 26.
    B. Shizgal, Can. J. Phys. 62, 97 (1984) ADSCrossRefGoogle Scholar
  27. 27.
    D. Kahaner, C. Moler, S. Nash, Numerical Methods and Software (Prentice-Hall, Englewood Cliffs, 1989), pp. 153–157 MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.The Center for Complex Quantum SystemsThe University of Texas at AustinAustinUSA

Personalised recommendations