Advertisement

Journal of Low Temperature Physics

, Volume 170, Issue 1–2, pp 99–107 | Cite as

Thermodynamics of an Ideal Bose Gas with a Finite Number of Particles Confined in a Three-Dimensional Quartic Trap

  • Jianhui Wang
  • Bo Zhuang
  • Jizhou He
Article

Abstract

Within an exact canonical-ensemble treatment, we investigate the thermodynamics for a finite number of ideal bosons confined in a three-dimensional quartic trap. We calculate several physical quantities including the specific heat C N , chemical potential μ, condensate fraction 〈n 0〉/N, root-mean-square fluctuations δn 0 of the condensate population, and transition temperature T c . We discuss the particle-number dependence of T c through proposing three T c definitions, which are compared with ones derived in the grand canonical ensemble.

Keywords

Ideal Bose gas Finite number of particles Quartic trap 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants No. 11147200 and 11065008, and the Foundation of Jiangxi Educational Committee under Grant No. GJJ12136.

References

  1. 1.
    W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, Making, probing and understanding Bose-Einstein condensates, in Bose-Einstein Condensation in Atomic Gases: Proceedings of the International School of Physics “Enrico Fermi”, Course CXL, ed. by M. Inguscio, S. Stringari, C.E. Wiemann (IOS Press, Amsterdam, 1999), pp. 67–176 Google Scholar
  2. 2.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995) ADSCrossRefGoogle Scholar
  3. 3.
    C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    D.M. Stamper-Kurn, M.R. Andrews, A.P. Chikkatur, S. Inouye, H.J. Miesner, J. Stenger, W. Ketterle, Phys. Rev. Lett. 80, 2027 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    J.H. Wang, Y.L. Ma, J. Phys. B, At. Mol. Opt. Phys. 42, 245301 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    G.Z. Su, J.C. Chen, Eur. J. Phys. 31, 143 (2010) MATHCrossRefGoogle Scholar
  7. 7.
    J.H. Wang, Y.L. Ma, Phys. Rev. A 79, 033604 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    J.H. Wang, H.Y. Tang, Y.L. Ma, Ann. Phys. 326, 634 (2011) ADSMATHCrossRefGoogle Scholar
  9. 9.
    J.H. Wang, J.Z. He, Y.L. Ma, Phys. Rev. E 83, 051132 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    J.H. Wang, Y.L. Ma, J.Z. He, J. Low Temp. Phys. 162, 23 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    J.H. Wang, J.Z. He, Eur. Phys. J. D 64, 73 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    J.H. Wang, J.Z. He, J. Low Temp. Phys. 166, 80 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    K.E. Dorfman, M. Kim, A.A. Svidzinsky, Phys. Rev. A 83, 033609 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    K. Glaum, H. Kleinert, A. Pelster, Phys. Rev. A 76, 063604 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    P. Navez, D. Bitouk, M. Gajda, Z. Idziaszek, K. Rzazewski, Phys. Rev. Lett. 79, 1789 (1997) ADSCrossRefGoogle Scholar
  16. 16.
    M. Wilkens, C. Weiss, J. Mod. Opt. 44, 1801 (1997) MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    C. Weiss, M. Wilkens, Opt. Express 1, 272 (1997) ADSCrossRefGoogle Scholar
  18. 18.
    P. Borrmann, J. Harting, O. Mülken, E.R. Hilf, Phys. Rev. A 60, 1519 (1999) ADSCrossRefGoogle Scholar
  19. 19.
    D.H.E. Gross, E.V. Votyakov, Eur. Phys. J. B 15, 115 (2000) ADSGoogle Scholar
  20. 20.
    D.H.E. Gross, Nucl. Phys. A 681, 366 (2001) ADSMATHCrossRefGoogle Scholar
  21. 21.
    V. Bretin, S. Stock, Y. Seurin, J. Dalibard, Phys. Rev. Lett. 92, 050403 (2004) ADSCrossRefGoogle Scholar
  22. 22.
    S. Stock, V. Bretin, F. Chevy, J. Dalibard, Europhys. Lett. 65, 594 (2004) ADSCrossRefGoogle Scholar
  23. 23.
    M. Cozzini, B. Jackson, S. Stringari, Phys. Rev. A 73, 013603 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    E.Ö. Karabulut, M. Koyuncu, M. Tomak, Physica A 389, 1371 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    S. Gautam, D. Angom, Eur. Phys. J. D 46, 151 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    A.L. Fetter, B. Jackson, S. Stringari, Phys. Rev. A 71, 013605 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    A.L. Fetter, Phys. Rev. A 64, 063608 (2001) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    O. Gygi, H.G. Katzgraber, M. Troyer, S. Wessel, G.G. Batrouni, Phys. Rev. A 73, 063606 (2006) ADSCrossRefGoogle Scholar
  29. 29.
    L. Wen, Y.L. Ma, Int. J. Mod. Phys. B 22, 5003 (2008) ADSMATHCrossRefGoogle Scholar
  30. 30.
    G.K. Chaudhary, A.K. Chattopadhyay, R. Ramakumar, Int. J. Mod. Phys. B 25, 3927 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    P.M. Mathews, M. Seetharaman, S. Raghavan, J. Phys. A 15, 103 (1982) MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    R. Napolitano, J. De Luca, V.S. Bagnato, G.C. Marques, Phys. Rev. A 55, 3954 (1997) ADSCrossRefGoogle Scholar
  33. 33.
    G.-X. Hu, X.-X. Dai, J.-X. Dai, W.E. Evenson, J. Low Temp. Phys. 133, 239 (2003) CrossRefGoogle Scholar
  34. 34.
    V.V. Kocharovsky, Vl.V. Kocharovsky, M.O. Scully, Phys. Rev. A 61, 053606 (2000) ADSCrossRefGoogle Scholar
  35. 35.
    S. Grossmann, M. Holthaus, Phys. Lett. A 208, 188 (1995) ADSCrossRefGoogle Scholar
  36. 36.
    V. Bagnato, D.E. Pritchard, D. Kleppner, Phys. Rev. A 35, 4354 (1987) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PhysicsNanchang UniversityNanchangChina
  2. 2.State Key Laboratory of Surface Physics and Department of PhysicsFudan UniversityShanghaiChina

Personalised recommendations