Advertisement

Journal of Low Temperature Physics

, Volume 170, Issue 1–2, pp 60–67 | Cite as

The Temperature Effects on the Parabolic Quantum Dot Qubit in the Electric Field

  • Ying-Jie Chen
  • Jing-Lin Xiao
Article

Abstract

The temperature effects on the parabolic quantum dot qubit in the electric field have been studied under the condition of electric-LO-phonon strong coupling using the variational method of Pekar type. The numerical results lead us to formulate the derivative relationships of the oscillation period of the electron in the superposition state of the ground state and the first-excited state with the electric field, the electron-LO-phonon coupling constant and the confinement length at different temperatures, respectively.

Keywords

Quantum optics Temperature effects Variational method of Pekar type Quantum dot Qubit 

Notes

Acknowledgements

This work was supported by the research fund from Qufu Normal University (Grand No. XJZ200839).

References

  1. 1.
    G. Burkard, D. Loss, D.P. DiVincenzo, Phys. Rev. B 59, 2070 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    A. Ekert, R. Jozsa, Rev. Mod. Phys. 68, 733 (1996) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    A. Imamoglu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, A. Small, Phys. Rev. Lett. 83, 4204 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    Z.J. Wu, K.D. Zhu, X.Z. Yuan, Y.W. Jiang, H. Zheng, Phys. Rev. B 71, 205323 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    S. Vorojtsov, E.R. Mucciolo, H.U. Baranger, Phys. Rev. B 71, 205322 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Science 309, 2180 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    P. Zhang, Q.K. Xue, X.G. Zhao, X.C. Xie, Phys. Rev. A 66, 022117 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    S. Weiss, M. Thorwart, R. Egger, Europhys. Lett. 76, 905 (2006) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000) MATHGoogle Scholar
  11. 11.
    W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    M. Thorwart, P. Hünggi, Phys. Rev. A 65, 012309 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    A. Hichri, S. Jaziri, R. Ferreira, Physica E 24, 234 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    W.A. Coish, E.A. Yuzbashyan, B.L. Altshuler, D. Loss, J. Appl. Phys. 101, 081715 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    W. Ben Chouikha, S. Jaziri, R. Bennaceur, Physica E 39, 15 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    F. Buscemi, P. Bordone, A. Bertoni, New J. Phys. 13, 013023 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    S. Filippov, V. Vyurkov, L. Fedichkin, Physica E 44, 501 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    Y. Sun, Z.H. Ding, J.L. Xiao, J. Low Temp. Phys. 166, 268 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    C.Z. Li, M.Q. Huang, P.X. Chen, Quantum Communication and Quantum Computing (National University of Defence Technology Press, Changsha, 2000) Google Scholar
  20. 20.
    S.H. Xiang, K.H. Song, Acta Phys. Sin. 55, 529 (2006) Google Scholar
  21. 21.
    S.S. Li, J.B. Xia, F.H. Yang, Z.C. Niu, S.L. Feng, H.Z. Zheng, J. Appl. Phys. 90, 6151 (2001) ADSCrossRefGoogle Scholar
  22. 22.
    S.S. Li, G.L. Long, F.S. Bai, S.L. Feng, H.Z. Zhang, Proc. Natl. Acad. Sci. USA 98, 11847 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    Y.J. Chen, J.L. Xiao, Acta Phys. Sin. 57, 6758 (2008) MathSciNetGoogle Scholar
  24. 24.
    Y.J. Chen, J.L. Xiao, Commun. Theor. Phys. 52, 601 (2009) ADSMATHCrossRefGoogle Scholar
  25. 25.
    Z.W. Wang, J.L. Xiao, Acta Phys. Sin. 56, 678 (2007) Google Scholar
  26. 26.
    J.W. Yin, J.L. Xiao, Y.F. Yu, Z.W. Wang, Chin. Phys. B 18, 0446 (2009) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.College of Physics and EngineeringQufu Normal UniversityQufuChina
  2. 2.College of Physics and Electronic InformationInner Mongolia National UniversityTongliaoChina

Personalised recommendations