Advertisement

Journal of Low Temperature Physics

, Volume 169, Issue 1–2, pp 15–24 | Cite as

Numerical Study of a Multilayered Target for Muonic X-Ray Generation by Taking Time Delay of Muonic Atoms

  • R. Gheisari
Article

Abstract

The μd energetic atoms are produced by injection of fast muons into a solid hydrogen target of H 2/D 2, which contains a small amount of deuterium. A solid layer of D 2 has been frozen on H 2/D 2 for ion implantation. The target has been kept at low temperature ∼3 K. Once ions are implanted into such a target in experiment, characteristic muonic X-rays are generated. Analyzing such X-rays is very useful for understanding nuclear shape of implanted ions. Here, X-ray yields have been determined by taking time delay of energetic μd(1s) atoms using an alternative kinetic approach. The introduced kinetic model describes recent experimental data well. There are reasonable agreements between obtained X-ray yields and those experimentally reported by Strasser et al.

Keywords

Ion implantation Low temperature Two-layer hydrogen target Time delay Deuterium impurity 

Notes

Acknowledgements

The author would like to thank the Persian Gulf University Research Council for their partially financial support (Project no. PGU/FS/21-2/1390/1217).

References

  1. 1.
    R. Pohl, A. Antognini, F. Nez, F.D. Amaro, F. Biraben, J.M.R. Cardoso et al., The size of the proton. Nature 466, 213–216 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    J.D. Carroll, A.W. Thomas, J. Rafelski, G.A. Miller, Non-perturbative relativistic calculation of the muonic hydrogen spectrum. Phys. Rev. A 84, 012506 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    M.O. Distler, J.C. Bernauer, T. Walcher, The RMS charge radius of the proton and Zemach moments. Phys. Lett. B 696, 343–347 (2011) ADSCrossRefGoogle Scholar
  4. 4.
    V.E. Markushin, Muonic atoms and muon catalyzed fusion in inhomogeneous mixtures of hydrogen isotopes. Hyperfine Interact. 101/102, 155–162 (1996) ADSCrossRefGoogle Scholar
  5. 5.
    K. Nagamine, Review of muon catalyzed fusion experiments—activities after EXAT98 and future perspectives. Hyperfine Interact. 138, 5–13 (2001) ADSCrossRefGoogle Scholar
  6. 6.
    J. Wozniak, A. Adamczak, G.A. Beer, V.M. Bystritsky, M. Filipowicz, M.C. Fujiwara et al., Scattering of muonic atoms in solid hydrogen. Phys. Rev. A 68, 062502 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    P. Strasser, K. Nagamine, T. Matsuzaki, K. Ishida, Y. Matsuda, K. Itahashi et al., Generation and investigation of radioactive muonic atoms in solid hydrogen films. Nucl. Phys. A 722, C523–C527 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    F. Mulhauser, A. Adamczak, G.A. Beer, V.M. Bystritsky, M. Filipowicz, M.C. Fujiwara et al., Ramsauer-Townsend effect in muonic atom scattering. Phys. Rev. A 73, 034501 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    P. Strasser, A. Taniguchi, T. Matsuzaki, K. Ishida, Y. Matsuda, S. Ohya, M. Iwasaki, K. Nagamine, Muon spectroscopy with trace alkaline-earth and rare-earth isotopes implanted in solid D 2. Hyperfine Interact. 193, 121–127 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    P. Strasser, T. Matsuzaki, K. Nagamine, Proposal for X-ray spectroscopy of muonic atoms formed from implanted ions in solid hydrogen films. Hyperfine Interact. 119, 317–322 (1999) ADSCrossRefGoogle Scholar
  11. 11.
    P. Strasser et al., Experimental setup for X-ray spectroscopy of muonic atoms formed from implanted ions in solid hydrogen. Nucl. Instrum. Methods Phys. Res. A 460, 451 (2001) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    P. Strasser et al., Muonic atoms of radioactive nuclei. Nucl. Phys. B, Proc. Suppl. 149, 390 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    R. Gheisari, Investigation of the hydrogen multilayered target H/TD 2 and muonic X-ray yields in ion implantation. Nucl. Instrum. Methods Phys. Res. A 660, 48 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    C. Petitjean, Progress in muon catalyzed fusion. Nucl. Phys. A 543, 79–97 (1992) ADSCrossRefGoogle Scholar
  15. 15.
    S. Eliezer, Muon catalyzed nuclear fusion. Laser Part. Beams 6, 63–81 (1988) ADSCrossRefGoogle Scholar
  16. 16.
    P. Strasser, K. Ishida, S. Sakamoto, K. Shimomura, N. Kawamura, E. Torikai et al., μCF experiments in thin deuterium films and progress towards slow μ production. Hyperfine Interact. 101/102, 539–546 (1996) ADSCrossRefGoogle Scholar
  17. 17.
    R. Gheisari, Forced chemical confinement fusion: μ-catalyzed fusion by taking resonance escape probability of (1s) atom using an alternative kinetic model. Nucl. Fusion 50, 125009 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    P. Strasser, K. Nagamine, T. Matsuzaki, K. Ishida, Y. Matsuda, M. Iwasaki, Physics with ultra slow antiprotons. AIP Conf. Proc. 793, 242–257 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    K.R. Shirazi, Theoretical studies on solid heterogenous targets thickness in muon catalyzed fusion using transport theory and its comparison with available experimental values. Chaos Solitons Fractals 36, 1232–1243 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    M. Filipowicz, V.M. Bystritsky, V.V. Gerasimov, J. Wozniak, Kinetics of muon catalyzed fusion processes in solid H/D mixture. Eur. Phys. J. D 47, 157–170 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    R. Gheisari, The fusion of dtμ, ttμ and ddμ molecules in three-layer arrangement including deuterium degrader and moderator, Int. J. Hydro. Energy 35, 9199–9204 (2010) Google Scholar
  22. 22.
    R. Gheisari, H. Eslamizadeh, A. Avazpour, Muon dynamics in the multilayered target HT/D 2/H 2D 2 at low temperature. J. Low Temp. Phys. 164, 54–60 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    J. Zmeskal, P. Kammel, A. Scrinzi, W.H. Breunlich, M. Cargnelli, J. Marton et al., Muon-catalyzed dd fusion between 25 and 150 K: Experiment. Phys. Rev. A 42, 1165–1177 (1990) ADSCrossRefGoogle Scholar
  24. 24.
    L.I. Ponomarev, C. Petitjean, Fusion Technol. 20, 1022 (1991) Google Scholar
  25. 25.
    F. Mulhauser, J.L. Beveridge, G.M. Marshall, J.M. Bailey, G.A. Beer, P.E. Knowles et al., Measurement of muon transfer from proton to triton and ppμ molecular formation in solid hydrogen. Phys. Rev. A 53, 3069–3080 (1996) ADSCrossRefGoogle Scholar
  26. 26.
    A. Toyoda, K. Ishida, K. Shimomura, S.N. Nakamura, Y. Matsuda, W. Higemoto et al., New insights in muon-catalyzed dd fusion by using ortho-para controlled solid deuterium. Phys. Rev. Lett. 90, 243401 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    R.J. Guillarmod, J.M. Bailey, G.A. Beer, J.L. Beveridge, M.C. Fujiwara, T.M. Huber et al., Muon molecular formation and transfer rate in solid hydrogen-deuterium mixtures. Hyperfine Interact. 101/102, 239–248 (1996) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Physics DepartmentPersian Gulf UniversityBushehrIran

Personalised recommendations