Advertisement

Journal of Low Temperature Physics

, Volume 167, Issue 5–6, pp 759–764 | Cite as

TEM-EDS with Breakthroughs in 3D Wiring and High-Speed Processing

  • K. Sakai
  • K. Mitsuda
  • N. Y. Yamasaki
  • Y. Takei
  • R. Yamamoto
  • T. Hara
  • K. Maehata
  • N. Iyomoto
  • K. Tanaka
Article

Abstract

We have been improving our TEM-EDS for elemental microanalysis after a successful achievement of a high energy resolution (7.8 eV at 1.7 keV) using a TES microcalorimeter. The improvements fall into a 3D superconductive wiring and a high-speed processing (∼3,000 cps). We are implementing a 10-ch TES array for higher count rate and a broader dynamic range. The shape of a probe needs to be a small polygonal rod with an approximate size of 1 cm×1 cm×10 cm, and hence the placing and wiring of the TES array and read-out circuits at the cryogenic stage were very demanding. We overcame those difficulties by 3D photolithography and electrodeposition. With these new technologies, we developed the OFC probe with solder-plated 3D wiring, and successfully observed a superconductivity at the temperature of liquid helium. As a required count rate per channel is ∼300 cps, the overall system count rate is ∼3,000 cps, which is incomparably higher than before. In the last model, we used an embedded system to process waveforms from a 4-ch 14-bit 1 MS/s ADC due to a small signal bandwidth, but this time we parallelized three identical ADCs and transfer raw waveforms by Ethernet lines to a host to achieve the required system count rate.

Keywords

TES TEM EDS SpaceWire 

Notes

Acknowledgements

We are grateful to Howa Sangyo Co., Ltd., Photo Precision Co., Ltd., and Now Chemical Co., Ltd. for the fabrication of the probe with superconductive 3D wiring. This work was financially supported by SENTAN, Japan Science and Technology Agency (JST).

References

  1. 1.
    T. Hara, K. Tanaka, K. Maehata, K. Mitsuda, N.Y. Yamasaki, M. Ohsaki, K. Watanabe, X.Z. Yu, T. Ito, Y. Yamanaka, J. Electron Microsc. 59, 17 (2010) CrossRefGoogle Scholar
  2. 2.
    K. Tanaka, K. Mitsuda, T. Hara, K. Maehata, N.Y. Yamasaki, A. Odawara, A. Nagata, K. Watanabe, Y. Takei, AIP Conf. Proc. 1185, 715 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Shimoda, H. Seta, M.S. Tashiro, Y. Terada, T. Yasuda, S. Takeda, Y. Ishisaki, M. Tsujimoto, K. Mitsuda, K. Masukawa, K. Matsuda, K.R. Boyce, Proceedings LTD14. J. Low Temp. Phys. (2012) Google Scholar
  4. 4.
    T. Hagihara, K. Mitsuda, N.Y. Yamasaki, M. Nomachi, M. Kokubun, Y. Takei, T. Yuasa, H. Odaka, J. Low Temp. Phys. 151, 997 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • K. Sakai
    • 1
  • K. Mitsuda
    • 1
  • N. Y. Yamasaki
    • 1
  • Y. Takei
    • 1
  • R. Yamamoto
    • 1
  • T. Hara
    • 2
  • K. Maehata
    • 3
  • N. Iyomoto
    • 3
  • K. Tanaka
    • 4
  1. 1.ISAS/JAXASagamiharaJapan
  2. 2.National Institute for Materials ScienceTsukubaJapan
  3. 3.Kyushu UniversityNishiJapan
  4. 4.SIINT Inc.Suntou-gunJapan

Personalised recommendations