Journal of Low Temperature Physics

, Volume 167, Issue 5–6, pp 961–966 | Cite as

Towards an Absolute Determination of the Particle Energy Thermalized in Bolometers

  • L. Torres
  • N. Coron
  • P. de Marcillac
  • M. Martinez
  • T. Redon


We describe a procedure to derive the absolute energy thermalized in the bolometer’s target after a particle interaction. It relies on the comparison of the theoretical responsivity in stationary regime (deduced from the IV curves) and the area of the pulse. Full thermalization in metals is addressed at high cryogenic temperatures (over 400 mK). Taking them as reference materials when glued to a target, they can be used to estimate the thermalization efficiency of particles in dielectrics and superconductors.

We have applied the procedure to our current detectors for dark matter and neutron, α and X-ray spectroscopy (LiF, Li6Gd(BO3)3, Ge, Cu and Ta) at different cryogenic temperatures (from 20 to 570 mK). The procedure permits also to measure the loss of sensitivity due to the deviation from an ideal isothermal bolometer model. Previous works on thermalization reported by other teams are reviewed and applications are discussed.


Bolometers Thermalization of particle energy Calorimetry 



This work has been supported by the French CNRS/INSU (MANOLIA and BOLERO projects). The measurements with tantalum are supported by the CNES (MoB2 project) within a CEA/IRFU/SAP–CNRS/CSNSM&IAS collaboration. We are extremely grateful to C. Pigot, J.-L. Sauvageot, L. Dumoulin and S. Marnieros for tantalum treatment and discussions. L. Torres is supported by a postdoctoral grant of the Spanish Ministerio de Educacion y Ciencia and M. Martinez by a postdoctoral grant from the P2I program funded by Université de Paris Sud.


  1. 1.
    D. McCammon et al., IEEE Trans. Nucl. Sci. 33, 236 (1986) ADSCrossRefGoogle Scholar
  2. 2.
    R. Kessel et al., SPIE J. 1140, 84 (1989) ADSGoogle Scholar
  3. 3.
    E. Silver et al., SPIE J. 1159, 423 (1989) ADSGoogle Scholar
  4. 4.
    E. Perinati et al., Rev. Sci. Instrum. 79, 053905 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    R.H. Horansky et al., J. Low Temp. Phys. 151, 1067 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    G. Gallinaro et al., Europhys. Lett. 14, 225 (1991) ADSCrossRefGoogle Scholar
  7. 7.
    C. Jones, J. Opt. Soc. Am. 43, 1 (1953) ADSCrossRefGoogle Scholar
  8. 8.
    J.C. Mather, Appl. Opt. 21, 1125 (1982) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    N. Wang, Phys. Rev. B 41, 3761 (1990) ADSCrossRefGoogle Scholar
  10. 10.
    J. Gironnet, PhD thesis. Université Paris Sud (2010) Google Scholar
  11. 11.
    C. Ginestra et al., To be published in these proceedings Google Scholar
  12. 12.
    G. Baldacchini et al., J. Lumin. 122–123, 371 (2007) CrossRefGoogle Scholar
  13. 13.
    E. Leblanc et al., Appl. Radiat. Isot. 64, 1281 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • L. Torres
    • 1
  • N. Coron
    • 1
  • P. de Marcillac
    • 1
  • M. Martinez
    • 1
  • T. Redon
    • 1
  1. 1.Institut d’Astrophysique SpatialeOrsay CedexFrance

Personalised recommendations