Advertisement

Journal of Low Temperature Physics

, Volume 167, Issue 5–6, pp 949–954 | Cite as

Application of CLTD’s for High Resolution Mass Identification and for Stopping Power Measurements of Heavy Ions

  • A. Echler
  • A. Bleile
  • P. Egelhof
  • S. Ilieva
  • S. Kraft-Bermuth
  • J. P. Meier
  • M. Mutterer
Article

Abstract

An array of calorimetric low temperature detectors (CLTD’s) for energy sensitive detection of heavy ions was combined with time-of-flight (TOF) detectors to obtain a detector system for high resolution mass identification of low energy heavy ions. In addition the same setup was used to prove the ability of CLTD’s to be used in electronic stopping power measurements for heavy ions in matter. Experiments with 50 MeV 63Cu and 65Cu ions at the tandem accelerator at the MPI at Heidelberg, and with 25 to 250 MeV 238U ions at the UNILAC accelerator at GSI at Darmstadt have been performed. For 63,65Cu at 50 MeV a mass resolution of Δm(FWHM)=0.9 amu, and for 238U in an energy range of 65 to 150 MeV a resolution of Δm(FWHM)=1.28 amu, was obtained. The results for stopping powers of 238U in carbon and gold are presented and compared with theoretical predictions and data from the literature.

Keywords

Heavy ions E-ToF Mass identification Stopping power Pulse height defect 

Notes

Acknowledgements

We would like to thank the staff of the accelerator facility at MPI in Heidelberg, for excellent support before and during our measurements, and the staff of the UNILAC at GSI for providing a high quality 238U-beam.

References

  1. 1.
    P. Egelhof, S. Kraft-Bermuth, AIP Conf. Proc. 1185, 761 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    P. Egelhof, S. Kraft-Bermuth, Top. Appl. Phys. 99, 469 (2005) Google Scholar
  3. 3.
    S.E. Bramer, An Introduction to Mass Spectrometry. Wiedner University, Chester (1998) Google Scholar
  4. 4.
    S. Kraft-Bermuth et al., Rev. Sci. Instrum. 80, 103304 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    H. Paul, Nucl. Instrum. Methods B 261, 1176 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    H. Geissel et al., Nucl. Instrum. Methods B 195, 3 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    P. Sigmund, Nucl. Instrum. Methods B 135, 1 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    J.F. Ziegler, www.srim.org
  9. 9.
    H. Paul, Web site: www.exphys.jku.at/stopping/
  10. 10.
    W.H. Trazaska et al., Nucl. Instrum. Methods B 267, 3403 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    W.H. Trazaska et al., Nucl. Instrum. Methods B 195, 147 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    W.H. Trazaska et al., Nucl. Instrum. Methods B 183, 203 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    H. Geissel et al., Various datasets summarized in electronic library of H. Paul [9] Google Scholar
  14. 14.
    M.D. Brown, C.D. Moak, Phys. Rev. B 6, 90 (1972) ADSCrossRefGoogle Scholar
  15. 15.
    H. Pape, H.G. Clerc, K.H.Schmidt. Z. Phys. A 286, 159 (1978) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. Echler
    • 1
    • 2
  • A. Bleile
    • 1
    • 2
  • P. Egelhof
    • 1
    • 2
  • S. Ilieva
    • 1
  • S. Kraft-Bermuth
    • 3
  • J. P. Meier
    • 1
  • M. Mutterer
    • 1
  1. 1.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  2. 2.Johannes Gutenberg UniversitätMainzGermany
  3. 3.Justus-Liebig-UniversitätGießenGermany

Personalised recommendations