Journal of Low Temperature Physics

, Volume 166, Issue 5–6, pp 231–241 | Cite as

Gas Adsorption in Novel Environments, Including Effects of Pore Relaxation

  • Milton W. Cole
  • Silvina M. Gatica
  • Hye-Young Kim
  • Angela D. Lueking
  • Sarmishtha Sircar


Adsorption experiments have been interpreted frequently with simplified model geometries, such as ideally flat surfaces and slit or cylindrical pores. Recent explorations of unusual environments, such as fullerenes and metal-organic-framework materials, have led to a broadened scope of experimental, theoretical and simulation investigations. This paper reviews a number of such studies undertaken by our group. Among the topics receiving emphasis are these: universality of gas uptake in pores, relaxation of a porous absorbent due to gas uptake, and the novel phases of gases on a single nanotube, all of which studies have been motivated by recent experiments.


Adsorption Carbon nanotubes Substrate relaxation 



We acknowledge support by the Department of Energy, Energy Efficiency and Renewable Energy Program (DE-FG36-08GO18139), to Penn State, and NSF and PRF support to Howard University.


  1. 1.
    L.M. Sander, J. Hautman, Generalized law of corresponding states. Phys. Rev. B 29, 2171–2174 (1984) ADSCrossRefGoogle Scholar
  2. 2.
    E. Cheng, A. Chizmeshya, M.W. Cole, J.R. Klein, J. Ma, W.F. Saam, J. Treiner, New phenomena predicted for films on weak-binding surfaces. Physica A 177, 466–473 (1991) ADSCrossRefGoogle Scholar
  3. 3.
    J. De Boer, Quantum theory of condensed permanent gases. I. The law of corresponding states. Physica 14, 139–148 (1948) ADSCrossRefGoogle Scholar
  4. 4.
    J.S. Rowlinson, Cohesion: A Scientific History of Intermolecular Forces (Cambridge University Press, Cambridge, 2002) CrossRefGoogle Scholar
  5. 5.
    D.F. Quinn, Supercritical adsorption of ‘permanent’ gases under corresponding states on various carbons. Carbon 40, 2767–2773 (2002) CrossRefGoogle Scholar
  6. 6.
    H.-Y. Kim, A.D. Lueking, S.M. Gatica, J.K. Johnson, M.W. Cole, A corresponding states principle for physisorption and deviations for quantum fluids. Mol. Phys. 106, 1579–1585 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    G. Vidali, G. Ihm, H.-Y. Kim, M.W. Cole, Potentials of physical adsorption. Surf. Sci. Rep. 12, 133–181 (1991) CrossRefGoogle Scholar
  8. 8.
    G. Gunther, M. Schoen, Sorption strain as a packing phenomenon. Phys. Chem. Chem. Phys. 11, 9082–9092 (2009) CrossRefGoogle Scholar
  9. 9.
    H.-Y. Kim, S.M. Gatica, G. Stan, M.W. Cole, Effects of substrate relaxation on adsorption in pores. J. Low Temp. Phys. 156, 1–8 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    A. Grosman, C. Ortega, Influence of elastic deformation of porous materials in adsorption-desorption process: a thermodynamic approach. Phys. Rev. B 78, 085433 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    A. Boutin, F.X. Coudert, M.A. Springuel-Huet, A.V. Neimark, G. Ferey, A.H. Fuchs, The behavior of flexible MIL-53(Al) upon CH4 and CO2 adsorption. J. Phys. Chem. C 114, 22237–22244 (2010) CrossRefGoogle Scholar
  12. 12.
    F. Ancilotto, M.W. Cole, A. Grosman, E.S. Hernández, F. Toigo, Expansion or contraction of slit pores due to gas uptake. J. Low Temp. Phys. 163, 284–301 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    M.M. Calbi, F. Toigo, M.W. Cole, Dilation-induced phases of gases absorbed within a bundle of carbon nanotubes. Phys. Rev. Lett. 86, 5062–5065 (2001) ADSCrossRefGoogle Scholar
  14. 14.
    M.M. Calbi, F. Toigo, M.W. Cole, Dilation and intercalation of gases within carbon nanostructures. J. Low Temp. Phys. 126, 179–186 (2002) CrossRefGoogle Scholar
  15. 15.
    M.C. Gordillo, J. Boronat, J. Casulleras, H2 in the interstitial channels of nanotube bundles. Phys. Rev. B 68, 125421 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    O. Gulseren, T. Yildirim, S. Ciraci, Tunable adsorption on carbon nanotubes. Phys. Rev. Lett. 87, 116802 (2001) ; ADSCrossRefGoogle Scholar
  17. 17.
    S.M. Gatica, H.-Y. Kim, Condensation of fluids confined in non-rigid nanopores: with a little help from the substrate. J. Low Temp. Phys. 157, 382–394 (2009) CrossRefGoogle Scholar
  18. 18.
    K.E. Noa, A.D. Lueking, M.W. Cole, Imbibition transition: gas intercalation between graphene and a solid surface. J. Low Temp. Phys. 163, 26–33 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    D. Li, K. Kaneko, Hydrogen bond-regulated microporous nature of copper complex-assembled microcrystals. Chem. Phys. Lett. 335, 50–56 (2001) ADSCrossRefGoogle Scholar
  20. 20.
    R. Kitaura, K. Seki, G. Akiyama, S. Kitagawa, Porous coordination-polymer crystals with gated channels specific for supercritical gases. Angew. Chem., Int. Ed. Engl. 42, 428–431 (2003) CrossRefGoogle Scholar
  21. 21.
    F.X. Coudert, M. Jeffroy, A.H. Fuchs, A. Boutin, C. Mellot-Draznieks, Thermodynamics of guest-induced structural transitions in hybrid organic-inorganic frameworks. J. Am. Chem. Soc. 130(43), 14294–14302 (2008) CrossRefGoogle Scholar
  22. 22.
    S. Sircar, H. Wu, J. Li, A.D. Lueking, Effect of time, temperature, and kinetics on the hysteretic adsorption–desorption of H2, Ar, and N2 in the metal–organic framework Zn2. Langmuir 27(23), 14169–14179 (2011) CrossRefGoogle Scholar
  23. 23.
    Z. Wang, J. Wei, P. Morse, J.G. Dash, O.E. Vilches, D.H. Cobden, Phase transitions of adsorbed atoms on the surface of a carbon nanotube. Science 327, 552–555 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    H.-Y. Kim, M.W. Cole, M. Mbaye, S.M. Gatica, Phase behavior of Ar and Kr films on carbon nanotubes. J. Phys. Chem. A 115, 7249–7257 (2011) CrossRefGoogle Scholar
  25. 25.
    A. Thomy, X. Duval, Stepwise isotherms and phase-transitions in physisorbed films. Surf. Sci. 299/300, 415–425 (1994) CrossRefGoogle Scholar
  26. 26.
    K. Masenelli-Varlot, E. McRae, N. Dupont-Pavlovsky, Comparison adsorption of simple molecules on carbon nanotubes: Dependence of the adsorption properties on the nanotube morphology. Appl. Surf. Sci. 196, 209–215 (2002) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Milton W. Cole
    • 1
  • Silvina M. Gatica
    • 2
  • Hye-Young Kim
    • 3
  • Angela D. Lueking
    • 4
    • 5
  • Sarmishtha Sircar
    • 4
  1. 1.Dept. of PhysicsPennsylvania State UniversityUniversity ParkUSA
  2. 2.Dept. of Physics and AstronomyHoward UniversityWashingtonUSA
  3. 3.Dept. of Chemistry and PhysicsSoutheastern Louisiana UniversityHammondUSA
  4. 4.Dept. of Energy and Mineral EngineeringPennsylvania State UniversityUniversity ParkUSA
  5. 5.Dept. of Chemical Engineering and the EMS-Energy InstitutePennsylvania State UniversityUniversity ParkUSA

Personalised recommendations