Advertisement

Journal of Low Temperature Physics

, Volume 167, Issue 5–6, pp 582–587 | Cite as

Predicted Energy Resolution of a Running-Sum Algorithm for Microcalorimeters

  • Bradley K. Alpert
  • W. Bertrand Doriese
  • Joseph W. Fowler
  • Joel N. Ullom
Article

Abstract

The energy resolution of a high-pulse-rate filtering algorithm recently introduced by Hui Tan et al., based on running sums of TES microcalorimeter output streams, is predicted from average pulse shape and noise autocovariance. We compare with empirical resolution, and with optimal filtering predicted and empirical resolution, for a 55Fe source measured by multiplexed 2×4, 2×8, and 2×12 arrays of microcalorimeters.

Keywords

Filter algorithms High-rate processing Microcalorimeter Uncertainty 

References

  1. 1.
    H. Tan, D. Breus, W. Hennig, K. Sabourov, W.K. Warburton, W.B. Doriese, J.N. Ullom, M.K. Bacrania, A.S. Hoover, M.W. Rabin, in IEEE Nuclear Science Symp. Conf. Record (2008), pp. 1130–1133 Google Scholar
  2. 2.
    H. Tan, D. Breus, W. Hennig, K. Sabourov, J.W. Collins, W.K. Warburton, W. Bertrand Doriese, J.N. Ullom, M.K. Bacrania, A.S. Hoover, M.W. Rabin, in AIP Conf. Proc. (American Institute of Physics), vol. 1185, ed. by B. Cabrera, A. Miller, B. Young (2009), pp. 294–297 Google Scholar
  3. 3.
    H. Tan, W. Hennig, W.K. Warburton, W.B. Doriese, C.A. Kilbourne, IEEE Trans. Appl. Supercond. 21(3), 276–280 (2011) ADSCrossRefGoogle Scholar
  4. 4.
    S.H. Moseley, R.L. Kelley, R.J. Schoelkopf, A.E. Szymkowiak, D. McCammon, J. Zhang, IEEE Trans. Nucl. Sci. 35, 59–64 (1988) ADSCrossRefGoogle Scholar
  5. 5.
    A.E. Szymkowiak, R.L. Kelley, S.H. Moseley, C.K. Stahle, J. Low Temp. Phys. 93, 281–285 (1993) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2011

Authors and Affiliations

  • Bradley K. Alpert
    • 1
  • W. Bertrand Doriese
    • 1
  • Joseph W. Fowler
    • 1
  • Joel N. Ullom
    • 1
  1. 1.National Institute of Standards and TechnologyBoulderUSA

Personalised recommendations