Journal of Low Temperature Physics

, Volume 166, Issue 1–2, pp 49–58 | Cite as

Self-similar Expansion of the Density Profile in a Turbulent Bose-Einstein Condensate

  • M. Caracanhas
  • A. L. Fetter
  • S. R. Muniz
  • K. M. F. Magalhães
  • G. Roati
  • G. Bagnato
  • V. S. Bagnato


In a recent study we demonstrated the emergence of turbulence in a trapped Bose-Einstein condensate of 87Rb atoms. An intriguing observation in such a system is the behavior of the turbulent cloud during free expansion. The aspect ratio of the cloud size does not change in the way one would expect for an ordinary non-rotating (vortex-free) condensate. Here we show that the anomalous expansion can be understood, at least qualitatively, in terms of the presence of vorticity distributed throughout the cloud, effectively counteracting the usual reversal of the aspect ratio seen in free time-of-flight expansion of non-rotating condensates.


Atomic quantum fluid Condensate expansion Vortices Turbulence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.J. Leggett, Superfluidity. Rev. Mod. Phys. 71(2), S318–S323 (1999) CrossRefMathSciNetGoogle Scholar
  2. 2.
    O.M. Maragò, S.A. Hopkins, J. Arlt, E. Hodby, G. Hechenblaikner, C.J. Foot, Observation of the scissors mode and evidence for superfluidity of a trapped Bose-Einstein condensed gas. Phys. Rev. Lett. 84(10), 2056–2059 (2000) CrossRefADSGoogle Scholar
  3. 3.
    G. Hechenblaikner, E. Hodby, S.A. Hopkins, O.M. Maragò, C.J. Foot, Direct observation of irrotational flow and evidence of superfluidity in a rotating Bose-Einstein condensate. Phys. Rev. Lett. 88(7), 070406 (2002) CrossRefADSGoogle Scholar
  4. 4.
    M. Edwards, C.W. Clark, P. Pedri, L. Pitaevskii, S. Stringari, Consequence of superfluidity on the expansion of a rotating Bose-Einstein condensate. Phys. Rev. Lett. 88(7), 070405 (2002) CrossRefADSGoogle Scholar
  5. 5.
    D. Guéry-Odelin, S. Stringari, Scissors mode and superfluidity of a trapped Bose-Einstein condensed gas. Phys. Rev. Lett. 83(22), 4452–4455 (1999) CrossRefADSGoogle Scholar
  6. 6.
    C. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd edn. (Cambridge University Press, Cambridge, 2008) CrossRefGoogle Scholar
  7. 7.
    L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Clarendon, Oxford, 2003) MATHGoogle Scholar
  8. 8.
    A.L. Fetter, A.A. Svidzinsky, Vortices in a trapped dilute Bose-Einstein condensate. J. Phys., Condens. Matter 13(12), R135 (2001) CrossRefADSGoogle Scholar
  9. 9.
    A.L. Fetter, Rotating trapped Bose-Einstein condensates. Rev. Mod. Phys. 81(2), 647–691 (2009) CrossRefADSGoogle Scholar
  10. 10.
    M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83(13), 2498–2501 (1999) CrossRefADSGoogle Scholar
  11. 11.
    K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84(5), 806–809 (2000) CrossRefADSGoogle Scholar
  12. 12.
    J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Observation of vortex lattices in Bose-Einstein condensate. Science 292(5516), 476–479 (2001) CrossRefADSGoogle Scholar
  13. 13.
    K.W. Madison, F. Chevy, V. Bretin, J. Dalibard, Stationary states of a rotating Bose-Einstein condensate: Routes to vortex nucleation. Phys. Rev. Lett. 86(20), 4443–4446 (2001) CrossRefADSGoogle Scholar
  14. 14.
    Y. Shin, M. Saba, M. Vengalattore, T.A. Pasquini, C. Sanner, A.E. Leanhardt, M. Prentiss, D.E. Pritchard, W. Ketterle, Dynamical instability of a doubly quantized vortex in a Bose-Einstein condensate. Phys. Rev. Lett. 93(16), 160406 (2004) CrossRefADSGoogle Scholar
  15. 15.
    P. Engels, I. Coddington, P.C. Haljan, E.A. Cornell, Nonequilibrium effects of anisotropic compression applied to vortex lattices in Bose-Einstein condensates. Phys. Rev. Lett. 89(10), 100403 (2002) CrossRefADSGoogle Scholar
  16. 16.
    S.R. Muniz, D.S. Naik, C. Raman, Bragg spectroscopy of vortex lattices in Bose-Einstein condensates. Phys. Rev. A 73(4), 041605 (2006) CrossRefADSGoogle Scholar
  17. 17.
    E.A.L. Henn, J.A. Seman, E.R.F. Ramos, M. Caracanhas, P. Castilho, E.P. Olímpio, G. Roati, D.V. Magalhães, K.M.F. Magalhães, V.S. Bagnato, Observation of vortex formation in an oscillating trapped Bose-Einstein condensate. Phys. Rev. A 79(4), 043618 (2009) CrossRefADSGoogle Scholar
  18. 18.
    E.A.L. Henn, J.A. Seman, G. Roati, K.M.F. Magalhães, V.S. Bagnato, Emergence of turbulence in an oscillating Bose-Einstein condensate. Phys. Rev. Lett. 103(4), 045301 (2009) CrossRefADSGoogle Scholar
  19. 19.
    M. Kobayashi, M. Tsubota, Quantum turbulence in a trapped Bose-Einstein condensate. Phys. Rev. A 76(4), 045603 (2007) CrossRefADSGoogle Scholar
  20. 20.
    M. Tsubota, M. Kobayashi, Quantum turbulence in trapped atomic Bose-Einstein condensates. J. Low Temp. Phys. 150, 402 (2007) CrossRefADSGoogle Scholar
  21. 21.
    W.F. Vinen, J.J. Niemela, Quantum turbulence. J. Low Temp. Phys. 128(5–6), 167–231 (2002) CrossRefGoogle Scholar
  22. 22.
    M. Tsubota, Quantum turbulence - from superfluid helium to atomic BEC. J. Phys., Condens. Matter 21, 164207 (2009) CrossRefADSGoogle Scholar
  23. 23.
    W.F. Vinen, Quantum turbulence: achievements and challenges. J. Low Temp. Phys. 161, 419 (2010) CrossRefADSGoogle Scholar
  24. 24.
    M.S. Paoletti, D.P. Lathrop, Quantum turbulence. Ann. Rev. Condens. Matter Phys. 2, 213 (2011) CrossRefADSGoogle Scholar
  25. 25.
    E. Henn, J. Seman, G. Seco, E. Olimpio, P. Castilho, G. Roati, D. Magalhães, K. Magalhães, V. Bagnato, Bose-Einstein condensation in 87Rb-characterization of the Brazilian experiment. Braz. J. Phys., São Paulo 38, 279–286 (2008) Google Scholar
  26. 26.
    J.A. Seman, E.A.L. Henn, R.F. Shiozaki, G. Roati, F.J. Poveda-Cuevas, K.M.F. Magalhães, V.I. Yukalov, M. Tsubota, M. Kobayashi, K. Kasamatsu, V.S. Bagnato, Route to turbulence in a trapped Bose-Einstein condensate. Laser Phys. Lett. 8, 691–696 (2011) Google Scholar
  27. 27.
    Y. Castin, R. Dum, Bose-Einstein condensates in time dependent traps. Phys. Rev. Lett. 71(3), 463–512 (1999) Google Scholar
  28. 28.
    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 77(27), 5315 (1996) Google Scholar
  29. 29.
    A.L. Fetter, Vortices and dynamics in trapped Bose-Einstein condensates. J. Low Temp. Phys. 161, 445–459 (2010) CrossRefADSGoogle Scholar
  30. 30.
    D.S. Jin, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Collective excitations of a Bose-Einstein condensate in a dilute gas. Phys. Rev. Lett. 77, 420–423 (1996) CrossRefADSGoogle Scholar
  31. 31.
    S. Stringari, Collective excitations of a trapped Bose-condensed gas. Phys. Rev. Lett. 77, 2360–2363 (1996) CrossRefADSGoogle Scholar
  32. 32.
    A. Sedrakian, I. Wasserman, Oscillations of rotating trapped Bose-Einstein condensates. Phys. Rev. A 63(6), 063605 (2001) CrossRefADSGoogle Scholar
  33. 33.
    M. Cozzini, S. Stringari, Macroscopic dynamics of a Bose-Einstein condensate containing a vortex lattice. Phys. Rev. A 67(4), 041602 (2003) CrossRefADSGoogle Scholar
  34. 34.
    A.L. Fetter, Vortex nucleation in deformed rotating cylinders. J. Low Temp. Phys. 16(5/6), 533 (1974) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. Caracanhas
    • 1
  • A. L. Fetter
    • 2
  • S. R. Muniz
    • 1
  • K. M. F. Magalhães
    • 1
  • G. Roati
    • 3
  • G. Bagnato
    • 1
  • V. S. Bagnato
    • 1
  1. 1.Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.GLAM, Departments of Physics and Applied Physics, McCullough BuildingStanford UniversityStanfordUSA
  3. 3.INO-CNR and LENSUniversita di FirenzeSesto FiorentinoItaly

Personalised recommendations