Advertisement

Journal of Low Temperature Physics

, Volume 163, Issue 5–6, pp 317–344 | Cite as

Acoustic Emission by Quartz Tuning Forks and Other Oscillating Structures in Cryogenic 4He Fluids

  • D. Schmoranzer
  • M. La Mantia
  • G. Sheshin
  • I. Gritsenko
  • A. Zadorozhko
  • M. Rotter
  • L. Skrbek
Article

Abstract

We report on experimental investigations of acoustic emission by quartz tuning forks resonating at frequencies 32 kHz, 38 kHz, 77 kHz and 100 kHz immersed in cold gaseous 4He and its normal and superfluid liquid phases. Frequency dependence of the observed low-drive-linewidth at 350 mK together with the temperature and pressure dependences (1.3 K < T < 4.2 K, 0 < p < 25 bar) of the observed damping of the high frequency (77 and 100 kHz) resonators measured in normal liquid 4He and its superfluid phase provide strong and direct evidence of the importance of sound emission by these tuning forks. Three analytical models of acoustic emission by vibrating tuning forks are developed and compared with the experimental results. We also discuss the importance of sound emission for experiments with the commonly used 32 kHz tuning forks as well as other oscillating structures—spheres, wires, grids and various micromachined sensors. We compare the relative importance of dissipative losses due to laminar viscous/ballistic drag and acoustic emission in liquid and superfluid 4He.

Keywords

Quartz tuning fork Cryogenic helium Acoustic emission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.P. Eernisse, R.W. Ward, R.B. Wiggins, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 3230 (1988) CrossRefGoogle Scholar
  2. 2.
    K. Karrai, R.D. Grober, Tip-sample distance control for near-field scanning optical microscopes, in Near-Field Optics, ed. by M.A. Paesler, P.T. Moyer. Proc. SPIE, vol. 2535 (1995), p. 69 Google Scholar
  3. 3.
    M. Blažková, M. Človečko, V.B. Eltsov, E. Gažo, R. de Graaf, J.J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, W.F. Vinen, J. Low Temp. Phys. 150, 525 (2008) CrossRefADSGoogle Scholar
  4. 4.
    R. Blaauwgeers, M. Blažková, M. Človečko, V.B. Eltsov, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, D.E. Zmeev, J. Low Temp. Phys. 146, 537 (2007) CrossRefADSGoogle Scholar
  5. 5.
    P. Skyba, J. Low Temp. Phys. 160, 219 (2010) CrossRefADSGoogle Scholar
  6. 6.
    E.M. Pentti, J.T. Tuoriniemi, A.J. Salmela, A.P. Sebedash, J. Low Temp. Phys. 150, 555 (2008) CrossRefADSGoogle Scholar
  7. 7.
    L. Skrbek, M. Blažková, T.V. Chagovets, M. Rotter, D. Schmoranzer, J. Low Temp. Phys. 150, 194 (2008) CrossRefADSGoogle Scholar
  8. 8.
    M. Blažková, D. Schmoranzer, L. Skrbek, J. Low Temp. Phys. 34, 380 (2008) Google Scholar
  9. 9.
    E.M. Pentti, J.T. Tuoriniemi, A.J. Salmela, A.P. Sebedash, Phys. Rev. B 78, 064509 (2008) CrossRefADSGoogle Scholar
  10. 10.
    M. Blazkova, D. Schmoranzer, L. Skrbek, Phys. Rev. E 75, 025302 (2007) CrossRefADSGoogle Scholar
  11. 11.
    D. Schmoranzer, M. Král’ová, V. Pilcová, W.F. Vinen, L. Skrbek, Phys. Rev. E 81, 066316 (2010) CrossRefADSGoogle Scholar
  12. 12.
    M. Blažková, D. Schmoranzer, L. Skrbek, W.F. Vinen, Phys. Rev. B 79, 054522 (2009) CrossRefADSGoogle Scholar
  13. 13.
    G. Sheshin, A.A. Zadorozhko, E. Rudavskii, V. Chagovets, L. Skrbek, M. Blazhkova, J. Low Temp. Phys. 34, 875 (2008) CrossRefGoogle Scholar
  14. 14.
    M. Blažková, M. Človečko, E. Gažo, L. Skrbek, P. Skyba, J. Low Temp. Phys. 146, 305 (2007) CrossRefADSGoogle Scholar
  15. 15.
    D.I. Bradley, M.J. Fear, S.N. Fisher, A.M. Guénault, R.P. Haley, C.R. Lawson, P.V.E. McClintock, G.R. Pickett, R. Schanen, V. Tsepelin, L.A. Wheatland, J. Low Temp. Phys. 156, 116 (2009) CrossRefGoogle Scholar
  16. 16.
    D.I. Bradley, M. Človečko, E. Gažo, P. Skyba, J. Low Temp. Phys. 152, 147 (2008) CrossRefADSGoogle Scholar
  17. 17.
    D.I. Bradley, P. Crookston, S.N. Fisher, A. Ganshin, A.M. Guénault, R.P. Haley, M.J. Jackson, G.R. Pickett, R. Schanen, V. Tsepelin, J. Low Temp. Phys. 157, 476 (2009) CrossRefADSGoogle Scholar
  18. 18.
    D. Schmoranzer, L. Skrbek, J. Phys. Conf. Ser. 150, 012048 (2009) CrossRefADSGoogle Scholar
  19. 19.
    D.O. Clubb, O.V.L. Buu, R.M. Bowley, R. Nyman, J.R. Owers-Bradley, J. Low Temp. Phys. 136, 1 (2004) CrossRefADSGoogle Scholar
  20. 20.
    D. Garg, V.B. Efimov, M. Giltrow, P.V.E. McClintock, L. Skrbek, W.F. Vinen, Mutual interactions between oscillating objects in superfluid 4He: critical velocities and the persistence of remanent vortices, Europhys. Lett. (submitted) Google Scholar
  21. 21.
    L.D. Landau, E.M. Lifshitz, Hydrodynamics, 2nd edn. (Pergamon Press, New York, 1987) Google Scholar
  22. 22.
    C.L. Morfey, M.C.M. Wright, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 463, 2101–2127 (2007) CrossRefzbMATHADSMathSciNetGoogle Scholar
  23. 23.
    K.M. Li, S. Taherzadeh, K. Attenborough, J. Acoust. Soc. Am. 101, 3343–3352 (1997) CrossRefADSGoogle Scholar
  24. 24.
    K.M. Li, S. Taherzadeh, J. Acoust. Soc. Am. 102, 2050–2057 (1997) CrossRefADSGoogle Scholar
  25. 25.
    R.M. Sillitto, Am. J. Phys. 34, 639 (1966) CrossRefADSGoogle Scholar
  26. 26.
    D.A. Russell, Am. J. Phys. 68, 1139 (2000) CrossRefADSGoogle Scholar
  27. 27.
    I.M. Khalatnikov, Theory of Superfluidity (Nauka, Moscow, 1971) (in Russian) Google Scholar
  28. 28.
    S.P. Timoshenko, D.H. Young, Theory of Structures, 2nd edn. (McGraw-Hill College, New York, 1965) Google Scholar
  29. 29.
    M. Abramovitz, I.A. Stegun, Handbook of Mathematical Functions. Applied Mathematics Series, vol. 55 (National Bureau of Standards, Washington, 1964) Google Scholar
  30. 30.
    P.M. Morse, K.U. Ingard, Theoretical Acoustics (Princeton University Press, Princeton, 1986) Google Scholar
  31. 31.
    R.D. McCarty, Thermophysical properties of Helium-4 from 2 to 1500 K with pressures to 1000 atmospheres, Technical Note 631 National Bureau of Standards (1972) Google Scholar
  32. 32.
    V.D. Arp, R.D. McCarty, The properties of critical helium gas, Tech. Rep., U. of Oregon (1998) Google Scholar
  33. 33.
    G.L. Pollack, Rev. Mod. Phys. 41, 48 (1969) CrossRefADSGoogle Scholar
  34. 34.
    L. Skrbek, W.F. Vinen, The use of vibrating structures in the study of quantum turbulence, in Progress in Low Temperature Physics, ed. by M. Tsubota, W.P. Halperin, vol. XVI (Elsevier, Amsterdam, 2009), Chap. 4 Google Scholar
  35. 35.
    M. Morishita, T. Kuroda, A. Sawada, T. Satoh, J. Low Temp. Phys. 76, 387 (1989) CrossRefADSGoogle Scholar
  36. 36.
    H. Yano, A. Handa, H. Nakagawa, K. Obara, O. Ishikawa, T. Hara, M. Nakagawa, J. Low Temp. Phys. 138, 561 (2005) CrossRefADSGoogle Scholar
  37. 37.
    H. Yano, N. Hashimoto, A. Handa, M. Nakagawa, K. Obara, O. Ishikawa, T. Hata, Phys. Rev. B 75, 012502 (2007) CrossRefADSGoogle Scholar
  38. 38.
    R. Goto, S. Fujiyama, H. Yano, Y. Nago, N. Hashimoto, K. Obara, O. Ishikawa, M. Tsubota, T. Hata, Phys. Rev. Lett. 100, 045301 (2008) CrossRefADSGoogle Scholar
  39. 39.
    H. Yano, T. Ogawa, A. Mori, Y. Miura, Y. Nago, K. Obara, O. Ishikawa, T. Hata, J. Low Temp. Phys. 156, 132 (2009) CrossRefGoogle Scholar
  40. 40.
    D.I. Bradley, S.N. Fisher, A.M. Guénault, R.P. Haley, V. Tsepelin, G.R. Pickett, K.L. Zaki, J. Low Temp. Phys. 154, 97 (2009) CrossRefADSGoogle Scholar
  41. 41.
    J. Jäger, B. Schuderer, W. Schoepe, Phys. Rev. Lett. 74, 566 (1995) CrossRefADSGoogle Scholar
  42. 42.
    J. Luzuriaga, J. Low Temp. Phys. 138, 267 (1997) CrossRefADSGoogle Scholar
  43. 43.
    M. Niemetz, H. Kerscher, W. Schoepe, J. Low Temp. Phys. 126, 287 (2002) CrossRefGoogle Scholar
  44. 44.
    A.M. Hemmati, S. Fuzier, E. Bosque, S.W. VanSciver, J. Low Temp. Phys. 156, 71 (2009) CrossRefGoogle Scholar
  45. 45.
    H.A. Nichol, L. Skrbek, P.C. Hendry, P.V.E. McClintock, Phys. Rev. Lett. 92, 244501 (2004) CrossRefADSGoogle Scholar
  46. 46.
    H.A. Nichol, L. Skrbek, P.C. Hendry, P.V.E. McClintock, Phys. Rev. E 70, 056307 (2004) CrossRefADSGoogle Scholar
  47. 47.
    D. Charalambous, L. Skrbek, P.C. Hendry, P.V.E. McClintock, W.F. Vinen, Phys. Rev. E 74, 036307 (2006) CrossRefADSGoogle Scholar
  48. 48.
    R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217 (1998) CrossRefADSGoogle Scholar
  49. 49.
    E. Collin, T. Moutonet, J.S. Heron, O. Bourgeois, Yu.M. Bunkov, H. Godfrin, A tunable hybrid electro-magnetomotive NEMS device for low temperature physics. J. Low Temp. Phys. 162, 653 (2011) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • D. Schmoranzer
    • 1
  • M. La Mantia
    • 1
  • G. Sheshin
    • 2
  • I. Gritsenko
    • 2
  • A. Zadorozhko
    • 2
  • M. Rotter
    • 1
  • L. Skrbek
    • 1
  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.B. Verkin Institute for Low Temperature Physics and EngineeringKharkovUkraine

Personalised recommendations