Journal of Low Temperature Physics

, Volume 163, Issue 3–4, pp 184–202 | Cite as

Excess Conductivity Analysis of (Cu0.5Tl0.5)-1223 Substituted by Pr and La



Series of superconducting samples of type Cu0.5Tl0,5 Ba2Ca2−y R y Cu3O10−δ , where R=Pr and La with 0≤y≤0.20, were prepared in a sealed quartz tube via a single-step solid-state reaction technique. The prepared samples were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), and electron dispersive X-ray (EDX). XRD studies indicated that the tetragonal structure of (Cu0.5Tl0.5)-1223 phase does not change by Pr or La-substitutions whereas the lattice parameters a and c do. The elemental compositions analysis, determined from EDX, indicated that both Pr and La were successfully introduced into the microstructure of (Cu0.5Tl0.5)-1223 phase. The electrical resistivity ρ(T) was measured as a function of temperature using conventional dc four-probe technique. The fluctuation conductivity Δσ, above the superconducting transition temperature T c, was analyzed as a function of temperature using Aslamazov and Larkin model. It exhibits four different fluctuation regions namely critical (cr), three-dimensional (3D), two-dimensional (2D), and short-wave (sw). The zero-temperature coherence length, effective layer thickness of the two-dimensional system and inter-layer coupling strength were estimated as a function of the substitution-content y. Furthermore, the thermodynamics critical field, lower critical magnetic field, upper critical magnetic field, critical current density and Fermi energy were calculated from the Ginzburg number. The data indicated that both Pr and La-substitutions have quite similar behaviors.


High-Tc superconductors (Cu0.5Tl0,5)-1223 Thermodynamic properties Electronic transport X-ray 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Ihara, K.H. Yamafuji, T. Morishita, Advances in Superconductivity VII (Springer, Tokyo, 1995), p. 225 Google Scholar
  2. 2.
    N.A. Khan, A.A. Khurram, M. Mazhar, Physica C 407, 23 (2004) CrossRefADSGoogle Scholar
  3. 3.
    K. Tanaka, A. Iyo, Y. Tanaka, K. Tokiwa, N. Terada, M. Tokumoto, M. Ariyama, T. Tsukamoto, S. Miyashila, T. Watanabe, H. Ihara, Physica B 284–288, 1079 (2000) CrossRefGoogle Scholar
  4. 4.
    N.A. Khan, A.A. Din-ud-Fasih, Khurram, Physica C 417, 119 (2005) CrossRefADSGoogle Scholar
  5. 5.
    R. Awad, J. Alloys Comp. 474, 517 (2009) CrossRefGoogle Scholar
  6. 6.
    N.A. Khan, J. Asim, A.A. Khurram, H. Naghma, Physica C 425, 90 (2005) CrossRefADSGoogle Scholar
  7. 7.
    N.A. Khan, A. Hussain, Physica C 449, 21 (2006) CrossRefADSGoogle Scholar
  8. 8.
    N.A. Khan, G. Husnain, K. Sabeeh, J. Phys. Chem. Solids 67, 1841 (2006) CrossRefADSGoogle Scholar
  9. 9.
    G.F. Voronin, S.A. Degterov, J. Solid State Chem. 110, 50 (1994) CrossRefADSGoogle Scholar
  10. 10.
    I.V. Driessche, A. Buekenhoudt, K. Konstantinov, E. Brueneel, S. Hoste, Appl. Supercond. 4, 185 (1996) CrossRefGoogle Scholar
  11. 11.
    I. Karaca, S. Celebi, A. Varilci, A.I. Malik, Supercond. Sci. Technol. 16, 100 (2003) CrossRefADSGoogle Scholar
  12. 12.
    R. Awad, Supercond. Sci. Technol. 15, 933 (2002) CrossRefADSGoogle Scholar
  13. 13.
    N.A. Khan, Y. Sekita, H. Ihra, A. Maqsood, Physica C 377, 43 (2002) CrossRefADSGoogle Scholar
  14. 14.
    P.W. Anderson, Phys. Rev. Lett. 67, 2092 (1991) CrossRefADSGoogle Scholar
  15. 15.
    A.I. Abou-Aly, R. Awad, A.M. Hafez, A.A. Faraj, in Int. Conf. on Research Trends in Science and Technology, vol. 91 (2002) Google Scholar
  16. 16.
    H. Salamati, P. Kameli, Solid State Commun. 125, 407 (2003) CrossRefADSGoogle Scholar
  17. 17.
    L.G. Aslamazov, A.I. Larkin, Phys. Lett. A 26, 238 (1968) CrossRefADSGoogle Scholar
  18. 18.
    L.G. Aslamazov, A.I. Larkin, Sov. Phys., Solid State 10, 875 (1968) Google Scholar
  19. 19.
    K. Pradhan, S.B. Roy, P. Chaddha, C. Chen, B.M. Wanklyn, Phys. Rev. B 50, 7180 (1994) CrossRefADSGoogle Scholar
  20. 20.
    F. Sharifi, A.V. Herzog, R.C. Dynes, Phys. Rev. Lett. 71, 428 (1993) CrossRefADSGoogle Scholar
  21. 21.
    L. Reggiani, R. Vaglio, A. A Varlamo, Phys. Rev. B 44, 9541 (1991) CrossRefADSGoogle Scholar
  22. 22.
    P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977) CrossRefADSGoogle Scholar
  23. 23.
    C.J. Lobb, Phys. Rev. B 36, 3930 (1987) CrossRefADSGoogle Scholar
  24. 24.
    A. Petrovie, Y. Fasano, R. Lortz, M. Decrouc, M. Potel, R. Chevrel, O. Fischer, Physica C 460–462, 702 (2007) CrossRefGoogle Scholar
  25. 25.
    M.P. Rojas Sarmiento, M.A. Uribe Laverde, E. Vera López, D.A. Landineza, J. Roa-Rojas, Physica B 398, 360 (2007) CrossRefADSGoogle Scholar
  26. 26.
    P.C. Poole, A.H. Farach, J.R. Creswick, R. Prozorov, Superconductivity, 2nd edn. (Academic Press, Elsevier, San Diego, 2007) Google Scholar
  27. 27.
    I.V. Driessche, A. Buekenhoudt, K. Konstantinov, E. Brueneel, S. Hoste, Appl. Supercond 4, 185 (1996) CrossRefGoogle Scholar
  28. 28.
    H.H. Wen, H.P. Yang, S.L. Li, X.H. Zeng, A.A. Soukiassian, W.D. Si, X.X. Xi, Europhys. Lett. 64, 790 (2003) CrossRefADSGoogle Scholar
  29. 29.
    K. Tanaka, A. Iyo, Y. Tanaka, K. Tokiwa, M. Tokumoto, M. Ariyama, T. Tsukamoto, T. Watanabe, H. Ihara, Physica B 284–288, 1081 (2000) CrossRefGoogle Scholar
  30. 30.
    A.I. Abou Aly, I.H. Ibrahim, R. Awad, A. El-Harizy, A. Khalaf, J. Supercond. Nov. Magn. 23(7), 1325 (2010) CrossRefGoogle Scholar
  31. 31.
    A.I. Abou-Aly, R. Awad, I.H. Ibrahim, W. Abdeen, Solid State Commun. 140, 281 (2009) CrossRefADSGoogle Scholar
  32. 32.
    N.A. Khan, N. Hassan, M. Irfan, T. Firdous, Physica B 405, 1541 (2010) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  2. 2.Physics Department, Faculty of ScienceMansoura UniversityMansouraEgypt

Personalised recommendations