Advertisement

Journal of Low Temperature Physics

, Volume 162, Issue 5–6, pp 433–440 | Cite as

Shear Modulus in Viscoelastic Solid 4He

  • Jung-Jung Su
  • Matthias J. Graf
  • Alexander V. Balatsky
Article

Abstract

The complex shear modulus of solid 4He exhibits an anomaly in the same temperature region where torsion oscillators show a change in period. We propose that the observed stiffening of the shear modulus with decreasing temperature can be well described by the response of glassy components inside of solid 4He. Since glass is an anelastic material, we utilize the viscoelastic approach to describe its dynamics. The viscoelastic component possesses an increasing relaxation as temperature decreases. The response functions thus derived are identical to those obtained for a glassy, time-delayed restoring back-action. By generalizing the viscoelastic equations for stress and strain to a multiphase system of constituents, composed of patches with different damping and relaxation properties, we predict that the maximum change of the magnitude of the shear modulus and the maximum height of the dissipation peak are independent of an applied external frequency. The same response expressions allow us to calculate the temperature dependence of the shear modulus’ amplitude and dissipation. Finally, we demonstrate that a Vogel-Fulcher-Tammann (VFT) relaxation time is in agreement with available experimental data.

Keywords

Shear modulus Solid 4He Viscoelastics Glass Supersolid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Kim, M.H.W. Chan, Nature (London) 427, 225 (2004) CrossRefADSGoogle Scholar
  2. 2.
    E. Kim, M.H.W. Chan, Science 305, 1941 (2005) CrossRefADSGoogle Scholar
  3. 3.
    J. Day, J. Beamish, Phys. Rev. Lett. 96, 105304 (2006) CrossRefADSGoogle Scholar
  4. 4.
    S. Sasaki, R. Ishiguro, F. Caupin, H.J. Maris, S. Balibar, Science 313, 1098 (2006) CrossRefADSGoogle Scholar
  5. 5.
    S. Balibar, F. Caupin, Phys. Rev. Lett. 101, 189601 (2008) CrossRefADSGoogle Scholar
  6. 6.
    I.A. Todoshchenko, H. Alles, H.J. Junes, A.Ya. Parshin, V. Tsepelin, JETP Lett. 85, 454 (2007) CrossRefADSGoogle Scholar
  7. 7.
    C.A. Burns, N. Mulders, L. Lurio, M.H.W. Chan, A. Said, C.N. Kodituwakku, P.M. Platzman, Phys. Rev B 78, 224305 (2008) CrossRefADSGoogle Scholar
  8. 8.
    E. Blackburn, J.M. Goodkind, S.K. Sinha, J. Hudis, C. Broholm, J. van Duijn, C.D. Frost, O. Kirichek, R.B.E. Down, Phys. Rev. B 76, 024523 (2007) CrossRefADSGoogle Scholar
  9. 9.
    S.O. Diallo, J.V. Pierce, R.T. Azuah, O. Kirichek, J.W. Taylor, H.R. Glyde, Phys. Rev. Lett. 98, 205301 (2007) CrossRefADSGoogle Scholar
  10. 10.
    S.O. Diallo, R.T. Azuah, O. Kirichek, J.W. Taylor, H.R. Glyde, Phys. Rev. B 80, 060504(R) (2009) CrossRefADSGoogle Scholar
  11. 11.
    M.A. Adams, J. Mayers, O. Kirichek, R.B.E. Down, Phys. Rev. Lett. 98, 085301 (2007) CrossRefADSGoogle Scholar
  12. 12.
    O. Kirichek, J. Phys. Conf. Ser. 150, 032042 (2009) CrossRefADSGoogle Scholar
  13. 13.
    A.V. Balatsky, M.J. Graf, Z. Nussinov, S.A. Trugman, Phys. Rev. B 75, 094201 (2007) CrossRefADSGoogle Scholar
  14. 14.
    Z. Nussinov, A.V. Balatsky, M.J. Graf, S.A. Trugman, Phys. Rev. B 76, 014530 (2007) CrossRefADSGoogle Scholar
  15. 15.
    A.F. Andreev, JETP Lett. 109, 103 (2009) Google Scholar
  16. 16.
    S.E. Korshunov, JETP Lett. 90, 156 (2009) CrossRefADSGoogle Scholar
  17. 17.
    C. Enss, S. Hunklinger, Low-Temperature Physics (Springer, Heidelberg, 2005) Google Scholar
  18. 18.
    P. Esquinazi (ed.), Tunneling Systems in Amorphous and Crystalline Solids (Springer, Heidelberg, 1998) Google Scholar
  19. 19.
    M.J. Graf, A.V. Balatsky, Z. Nussinov, I. Grigorenko, S.A. Trugman, J. Phys. Conf. Ser. 150, 032025 (2009) CrossRefADSGoogle Scholar
  20. 20.
    M.J. Graf, Z. Nussinov, A.V. Balatsky, J. Low Temp. Phys. 158, 550 (2010) CrossRefADSGoogle Scholar
  21. 21.
    J.-J. Su, M.J. Graf, A.V. Balatsky, J. Low Temp. Phys. 159, 431 (2010) CrossRefADSGoogle Scholar
  22. 22.
    J.-J. Su, M.J. Graf, A.V. Balatsky, Phys. Rev. Lett. 105, 045302 (2010) CrossRefADSGoogle Scholar
  23. 23.
    C.-D. Yoo, A.T. Dorsey, Phys. Rev. B 79, 100504(R) (2009) CrossRefADSGoogle Scholar
  24. 24.
    J. Day, J. Beamish, Nature (London) 150, 853 (2007) CrossRefADSGoogle Scholar
  25. 25.
    J. Day, O. Syshchenko, J. Beamish, Phys. Rev. B 79, 214524 (2009) CrossRefADSGoogle Scholar
  26. 26.
    O. Syshchenko, J. Day, J. Beamish, Phys. Rev. Lett. 104, 195301 (2010) CrossRefADSGoogle Scholar
  27. 27.
    K.H. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941) CrossRefADSGoogle Scholar
  28. 28.
    Z. Nussinov, private communications Google Scholar
  29. 29.
    I. Iwasa, Phys. Rev. B 81, 104527 (2010) CrossRefADSGoogle Scholar
  30. 30.
    A. Granato, K. Lücke, J. Appl. Phys. 27, 583 (1956) MATHCrossRefADSGoogle Scholar
  31. 31.
    B. Hunt, E. Pratt, V. Gadagkar, M. Yamashita, A.V. Balatsky, J.C. Davis, Science 324, 632 (2009) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jung-Jung Su
    • 1
    • 2
  • Matthias J. Graf
    • 1
  • Alexander V. Balatsky
    • 1
    • 2
  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Center for Integrated NanotechnologiesLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations