Skip to main content
Log in

Shear Modulus in Viscoelastic Solid 4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The complex shear modulus of solid 4He exhibits an anomaly in the same temperature region where torsion oscillators show a change in period. We propose that the observed stiffening of the shear modulus with decreasing temperature can be well described by the response of glassy components inside of solid 4He. Since glass is an anelastic material, we utilize the viscoelastic approach to describe its dynamics. The viscoelastic component possesses an increasing relaxation as temperature decreases. The response functions thus derived are identical to those obtained for a glassy, time-delayed restoring back-action. By generalizing the viscoelastic equations for stress and strain to a multiphase system of constituents, composed of patches with different damping and relaxation properties, we predict that the maximum change of the magnitude of the shear modulus and the maximum height of the dissipation peak are independent of an applied external frequency. The same response expressions allow us to calculate the temperature dependence of the shear modulus’ amplitude and dissipation. Finally, we demonstrate that a Vogel-Fulcher-Tammann (VFT) relaxation time is in agreement with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Kim, M.H.W. Chan, Nature (London) 427, 225 (2004)

    Article  ADS  Google Scholar 

  2. E. Kim, M.H.W. Chan, Science 305, 1941 (2005)

    Article  ADS  Google Scholar 

  3. J. Day, J. Beamish, Phys. Rev. Lett. 96, 105304 (2006)

    Article  ADS  Google Scholar 

  4. S. Sasaki, R. Ishiguro, F. Caupin, H.J. Maris, S. Balibar, Science 313, 1098 (2006)

    Article  ADS  Google Scholar 

  5. S. Balibar, F. Caupin, Phys. Rev. Lett. 101, 189601 (2008)

    Article  ADS  Google Scholar 

  6. I.A. Todoshchenko, H. Alles, H.J. Junes, A.Ya. Parshin, V. Tsepelin, JETP Lett. 85, 454 (2007)

    Article  ADS  Google Scholar 

  7. C.A. Burns, N. Mulders, L. Lurio, M.H.W. Chan, A. Said, C.N. Kodituwakku, P.M. Platzman, Phys. Rev B 78, 224305 (2008)

    Article  ADS  Google Scholar 

  8. E. Blackburn, J.M. Goodkind, S.K. Sinha, J. Hudis, C. Broholm, J. van Duijn, C.D. Frost, O. Kirichek, R.B.E. Down, Phys. Rev. B 76, 024523 (2007)

    Article  ADS  Google Scholar 

  9. S.O. Diallo, J.V. Pierce, R.T. Azuah, O. Kirichek, J.W. Taylor, H.R. Glyde, Phys. Rev. Lett. 98, 205301 (2007)

    Article  ADS  Google Scholar 

  10. S.O. Diallo, R.T. Azuah, O. Kirichek, J.W. Taylor, H.R. Glyde, Phys. Rev. B 80, 060504(R) (2009)

    Article  ADS  Google Scholar 

  11. M.A. Adams, J. Mayers, O. Kirichek, R.B.E. Down, Phys. Rev. Lett. 98, 085301 (2007)

    Article  ADS  Google Scholar 

  12. O. Kirichek, J. Phys. Conf. Ser. 150, 032042 (2009)

    Article  ADS  Google Scholar 

  13. A.V. Balatsky, M.J. Graf, Z. Nussinov, S.A. Trugman, Phys. Rev. B 75, 094201 (2007)

    Article  ADS  Google Scholar 

  14. Z. Nussinov, A.V. Balatsky, M.J. Graf, S.A. Trugman, Phys. Rev. B 76, 014530 (2007)

    Article  ADS  Google Scholar 

  15. A.F. Andreev, JETP Lett. 109, 103 (2009)

    Google Scholar 

  16. S.E. Korshunov, JETP Lett. 90, 156 (2009)

    Article  ADS  Google Scholar 

  17. C. Enss, S. Hunklinger, Low-Temperature Physics (Springer, Heidelberg, 2005)

    Google Scholar 

  18. P. Esquinazi (ed.), Tunneling Systems in Amorphous and Crystalline Solids (Springer, Heidelberg, 1998)

    Google Scholar 

  19. M.J. Graf, A.V. Balatsky, Z. Nussinov, I. Grigorenko, S.A. Trugman, J. Phys. Conf. Ser. 150, 032025 (2009)

    Article  ADS  Google Scholar 

  20. M.J. Graf, Z. Nussinov, A.V. Balatsky, J. Low Temp. Phys. 158, 550 (2010)

    Article  ADS  Google Scholar 

  21. J.-J. Su, M.J. Graf, A.V. Balatsky, J. Low Temp. Phys. 159, 431 (2010)

    Article  ADS  Google Scholar 

  22. J.-J. Su, M.J. Graf, A.V. Balatsky, Phys. Rev. Lett. 105, 045302 (2010)

    Article  ADS  Google Scholar 

  23. C.-D. Yoo, A.T. Dorsey, Phys. Rev. B 79, 100504(R) (2009)

    Article  ADS  Google Scholar 

  24. J. Day, J. Beamish, Nature (London) 150, 853 (2007)

    Article  ADS  Google Scholar 

  25. J. Day, O. Syshchenko, J. Beamish, Phys. Rev. B 79, 214524 (2009)

    Article  ADS  Google Scholar 

  26. O. Syshchenko, J. Day, J. Beamish, Phys. Rev. Lett. 104, 195301 (2010)

    Article  ADS  Google Scholar 

  27. K.H. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941)

    Article  ADS  Google Scholar 

  28. Z. Nussinov, private communications

  29. I. Iwasa, Phys. Rev. B 81, 104527 (2010)

    Article  ADS  Google Scholar 

  30. A. Granato, K. Lücke, J. Appl. Phys. 27, 583 (1956)

    Article  MATH  ADS  Google Scholar 

  31. B. Hunt, E. Pratt, V. Gadagkar, M. Yamashita, A.V. Balatsky, J.C. Davis, Science 324, 632 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Jung Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, JJ., Graf, M.J. & Balatsky, A.V. Shear Modulus in Viscoelastic Solid 4He. J Low Temp Phys 162, 433–440 (2011). https://doi.org/10.1007/s10909-010-0322-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-010-0322-0

Keywords

Navigation