Advertisement

Journal of Low Temperature Physics

, Volume 162, Issue 5–6, pp 536–543 | Cite as

4He Fluid in Extremely Narrow 1D Channels 1.5 nm in Diameter

  • Taku Matsushita
  • Mitsunori Hieda
  • Nobuo Wada
Article
  • 51 Downloads

Abstract

To examine whether one-dimensional (1D) helium quantum fluid is realized in narrower channels than those studied previously, we have measured heat capacities of 4He adsorbed in nanoporous material FSM with straight 1D channels 1.5 nm in diameter. From the heat of desorption for adsorbed 4He, the coverage n f, up to which 4He film grows in the channels, is determined to be 15.4 μmol/m2 using the Frenkel-Halsey-Hill model. At coverages sufficiently below n f, the temperature dependence of the 4He heat capacity has a shoulder, above which adsorbed 4He is delocalized from the substrate. On the other hand, the depression of the heat capacity indicating quantum effects has not been observed up to n f, which suggests that 4He film in the channels remains amorphous-like normal fluid. Just above n f, the quantum effect is observed in 4He adatoms on the grain surface of FSM powder, which indicates that 1.5 nm channels are slightly below the limit required to realize quantum effect in the inside 4He fluid.

Keywords

4He film One-dimensional state Quantum fluid Nano-scale channel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Inagaki, A. Koiwai, N. Suzuki, Y. Fukushima, K. Kuroda, Bull. Chem. Soc. Jpn. 69, 1449 (1996) CrossRefGoogle Scholar
  2. 2.
    H. Ikegami, Y. Yamato, T. Okuno, J. Taniguchi, N. Wada, S. Inagaki, Y. Fukushima, Phys. Rev. B 76, 144503 (2007) CrossRefADSGoogle Scholar
  3. 3.
    N. Wada, Y. Minato, T. Matsushita, M. Hieda, J. Low Temp. Phys. (2010) in this volume Google Scholar
  4. 4.
    Y. Matsushita, R. Toda, M. Hieda, T. Matsushita, N. Wada, J. Phys. Chem. Solids 66, 1520 (2005) CrossRefADSGoogle Scholar
  5. 5.
    Y. Matsushita, J. Taniguchi, R. Toda, H. Ikegami, T. Matsushita, M. Hieda, N. Wada, J. Low Temp. Phys. 150, 342 (2008) CrossRefADSGoogle Scholar
  6. 6.
    J. Taniguchi, A. Yamaguchi, H. Ishimoto, H. Ikegami, T. Matsushita, N. Wada, S.M. Gatica, M.W. Cole, F. Ancilotto, S. Inagaki, Y. Fukushima, Phys. Rev. Lett. 94, 065301 (2005) CrossRefADSGoogle Scholar
  7. 7.
    Y. Matsushita, J. Taniguchi, A. Yamaguchi, H. Ishimoto, H. Ikegami, T. Matsushita, N. Wada, S.M. Gatica, M.W. Cole, F. Ancilotto, J. Low Temp. Phys. 138, 211 (2005) CrossRefADSGoogle Scholar
  8. 8.
    M. Girardeau, J. Math. Phys. 1, 516 (1960) MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    E. Cheng, M.W. Cole, Phys. Rev. B 38, 987 (1988) CrossRefADSGoogle Scholar
  10. 10.
    R. Toda, J. Taniguchi, R. Asano, T. Matsushita, N. Wada, J. Low Temp. Phys. 138, 177 (2005) CrossRefADSGoogle Scholar
  11. 11.
    R. Toda, M. Hieda, T. Matsushita, N. Wada, J. Taniguchi, H. Ikegami, S. Inagaki, Y. Fukushima, Phys. Rev. Lett. 99, 255301 (2007) CrossRefADSGoogle Scholar
  12. 12.
    H. Ikegami, T. Okuno, Y. Yamato, J. Taniguchi, N. Wada, S. Inagaki, Y. Fukushima, Phys. Rev. B 68, 092501 (2003) CrossRefADSGoogle Scholar
  13. 13.
    P.A. Crowell, F.W. Van Keuls, J.D. Reppy, Phys. Rev. Lett. 75, 1106 (1995) CrossRefADSGoogle Scholar
  14. 14.
    R. Toda, M. Hieda, T. Matsushita, N. Wada, J. Phys.: Conf. Ser. 150, 032112 (2009) CrossRefADSGoogle Scholar
  15. 15.
    A.F. Andreev, JETP Lett. 28, 556 (1978) [Pis’ma Zh. Exsp. Teor. Fiz. 28, 603 (1978)] ADSGoogle Scholar
  16. 16.
    N. Wada, J. Taniguchi, H. Ikegami, S. Inagaki, Y. Fukushima, Phys. Rev. Lett. 86, 4322 (2001) CrossRefADSGoogle Scholar
  17. 17.
    T. Matsushita, R. Toda, J. Taniguchi, H. Ikegami, N. Wada, J. Low Temp. Phys. 138, 289 (2005) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Physics, Graduate School of ScienceNagoya UniversityNagoyaJapan

Personalised recommendations