Advertisement

Journal of Low Temperature Physics

, Volume 162, Issue 3–4, pp 96–104 | Cite as

Atomic Hydrogen in Thick H2 Films at Temperatures 0.05–2 K

  • J. Järvinen
  • V. V. Khmelenko
  • D. M. Lee
  • J. Ahokas
  • S. Vasiliev
Article

Abstract

We describe experiments on hydrogen atoms stabilized in a 100 μm thick H2 film at temperatures between 0.05 and 2 K. The molecular hydrogen matrix was condensed directly from natural hydrogen gas. The H atoms are produced with a plasma discharge at temperatures below 1 K and studied with electron spin resonance. H densities of 2×1019 cm−3 in solid H2 were reached. As observed earlier in thin H2 films, we found a high stability of atomic populations and strong deviation from Boltzmann statistics of lowest two hyperfine states at the lowest temperatures. In thick films we found that the ESR resonance lines consisted of two closely spaced components with different widths indicating separate regions of high and low concentrations of H atoms in the H2 matrix. Upon warming, the two components show very different rates of recombination with the higher density component having a faster recombination rate at T>1 K. We discuss the atomic interactions and mobility, and also the structure of the samples of H atoms in the H2 matrix.

Keywords

Hydrogen Quantum solid Electron-spin resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.F. Andreev, I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969) ADSGoogle Scholar
  2. 2.
    R.W.H. Webeler, J. Chem. Phys. 64, 2253 (1976) CrossRefADSGoogle Scholar
  3. 3.
    I.F. Silvera, J.T.M. Walraven, in Prog. in Low Temp. Phys., vol. X, ed. by D.F. Brewer (North-Holland, Amsterdam, 1986) Google Scholar
  4. 4.
    J. Järvinen, J. Ahokas, S. Vasiliev, J. Low Temp. Phys. 147, 579 (2007) CrossRefADSGoogle Scholar
  5. 5.
    J. Ahokas, J. Järvinen, V.V. Khmelenko, D.M. Lee, S. Vasiliev, Phys. Rev. Lett. 97, 095301 (2006) CrossRefADSGoogle Scholar
  6. 6.
    J. Ahokas, O. Vainio, J. Järvinen, V.V. Khmelenko, D.M. Lee, S. Vasiliev, Phys. Rev. B 79, 220505 (2009) CrossRefADSGoogle Scholar
  7. 7.
    S. Vasilyev, J. Järvinen, E. Tjukanoff, A. Kharitonov, S. Jaakkola, Rev. Sci. Instrum. 75, 94 (2004) CrossRefADSGoogle Scholar
  8. 8.
    U. Albrecht, R. Conradt, S. Herminghaus, P. Leiderer, Low Temp. Phys. 22, 117 (1996) ADSGoogle Scholar
  9. 9.
    I.F. Silvera, Rev. Mod. Phys. 52, 393 (1980) CrossRefADSGoogle Scholar
  10. 10.
    J.C. Nickel, K. Imre, S. Trajmar, J. Phys., B At. Mol. Phys. 18, 125 (1984) CrossRefADSGoogle Scholar
  11. 11.
    G.W. Canters, C.S. Johnson Jr., J. Mag. Res. 6, 1 (1972) Google Scholar
  12. 12.
    J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V.V. Khmelenko, D.M. Lee, S. Vasiliev, Phys. Rev. B 81, 104516 (2010) CrossRefADSGoogle Scholar
  13. 13.
    M. Wojdyr, Fityk peak fitting software 0.8.6 (2010), www.unipress.waw.pl/fityk/
  14. 14.
    C.K. Jen, S.N. Foner, E.L. Cochran, V.A. Bowers, Phys. Rev. 112, 1169 (1958) CrossRefADSGoogle Scholar
  15. 15.
    J.H. van Vleck, Phys. Rev. 74, 1168 (1948) MATHCrossRefADSGoogle Scholar
  16. 16.
    A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • J. Järvinen
    • 1
    • 2
  • V. V. Khmelenko
    • 1
    • 3
  • D. M. Lee
    • 1
    • 3
  • J. Ahokas
    • 4
  • S. Vasiliev
    • 4
  1. 1.Laboratory of Atomic and Solid State PhysicsCornell UniversityIthacaUSA
  2. 2.Institut Néel, CNRSGrenoble cedex 9France
  3. 3.Department of Physics and AstronomyTexas A&M UniversityCollege StationUSA
  4. 4.Department of Physics and AstronomyUniversity of TurkuTurkuFinland

Personalised recommendations