Advertisement

Journal of Low Temperature Physics

, Volume 162, Issue 5–6, pp 455–463 | Cite as

On the Stability of Small Vacancy Clusters in Solid 4He

  • Y. Lutsyshyn
  • R. Rota
  • J. Boronat
Article

Abstract

We study numerically properties of multiple vacancies in solid 4He at zero temperature. Up to four vacancies were introduced into the solid through incommensuration between the number of available lattice sites and the actual number of atoms. Vacancy-vacancy correlation function increases at very short distances indicating effective vacancy attraction between vacancies located on nearby lattice sites. The decay of the pair correlation function at large distances puts an upper bound on the absolute value of the binding energy varying from 4 mK at melting density to 150 mK at the highest considered density \(\rho=32.2~\mbox{nm$^{-3}$}\), and no lower bound; either the four-vacancy clusters are unbound, or are bound too weakly for the temperatures of the supersolid experiments.

Keywords

Vacancy Solid helium Supersolid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Kim, M.H.W. Chan, Nature 427, 225 (2004) CrossRefADSGoogle Scholar
  2. 2.
    A.S.C. Rittner, J.D. Reppy, Phys. Rev. Lett. 97, 165301 (2006) CrossRefADSGoogle Scholar
  3. 3.
    M. Kondo, S. Takada, Y. Shibayama, K. Shirahama, J. Low Temp. Phys. 148, 695 (2007) CrossRefADSGoogle Scholar
  4. 4.
    A.F. Andreev, I.M. Lifshitz, J. Exp. Theor. Phys. 29, 1107 (1969) ADSGoogle Scholar
  5. 5.
    D.M. Ceperley, B. Bernu, Phys. Rev. Lett. 93, 155303 (2004) CrossRefADSGoogle Scholar
  6. 6.
    F. Pederiva, G.V. Chester, S. Fantoni, L. Reatto, Phys. Rev. B 56, 5909 (1997) CrossRefADSGoogle Scholar
  7. 7.
    B. Chaudhuri, F. Pederiva, G.V. Chester, Phys. Rev. B 60, 3271 (1999) CrossRefADSGoogle Scholar
  8. 8.
    D.E. Galli, L. Reatto, J. Low Temp. Phys. 134, 121 (2004) CrossRefADSGoogle Scholar
  9. 9.
    M. Boninsegni, A.B. Kuklov, L. Pollet, N.V. Prokof’ev, B.V. Svistunov, M. Troyer, Phys. Rev. Lett. 97, 080401 (2006) CrossRefGoogle Scholar
  10. 10.
    B.K. Clark, D.M. Ceperley, Comput. Phys. Commun. 179, 82 (2008) MATHCrossRefADSGoogle Scholar
  11. 11.
    L. Pollet, M. Boninsegni, A.B. Kuklov, N.V. Prokof’ev, B.V. Svistunov, M. Troyer, Phys. Rev. Lett. 101, 097202 (2008) CrossRefADSGoogle Scholar
  12. 12.
    M. Rossi, E. Vitali, D.E. Galli, L. Reatto, J. Phys., Conf. Ser. 150, 032090 (2009) CrossRefADSGoogle Scholar
  13. 13.
    C. Cazorla, G.E. Astrakharchik, J. Casulleras, J. Boronat, New J. Phys. 11, 013047 (2009) CrossRefADSGoogle Scholar
  14. 14.
    R. Pessoa, M. de Koning, S.A. Vitiello, Phys. Rev. B 80, 172302 (2009) CrossRefADSGoogle Scholar
  15. 15.
    B.A. Fraass, P.R. Granfors, R.O. Simmons, Phys. Rev. B 39, 124 (1989) CrossRefADSGoogle Scholar
  16. 16.
    E. Blackburn, J.M. Goodkind, S.K. Sinha, J. Hudis, C. Broholm, J. van Duijn, C.D. Frost, O. Kirichek, R.B.E. Down, Phys. Rev. B 76, 024523 (2007) CrossRefADSGoogle Scholar
  17. 17.
    Y. Lutsyshyn, C. Cazorla, J. Boronat, J. Low Temp. Phys. 158, 608 (2010) CrossRefADSGoogle Scholar
  18. 18.
    J. Casulleras, J. Boronat, Phys. Rev. B 52, 3654 (1995) CrossRefADSGoogle Scholar
  19. 19.
    S.A. Chin, Phys. Rev. A 42, 6991 (1990) CrossRefADSGoogle Scholar
  20. 20.
    J. Boronat, J. Casulleras, Phys. Rev. B 49, 8920 (1994) CrossRefADSGoogle Scholar
  21. 21.
    B.L. Hammond, W. Lester Jr., P.J. Reynolds, Monte Carlo Methods in Ab Initio Quantum Chemistry (World Scientific, Singapore, 1994) CrossRefGoogle Scholar
  22. 22.
    L. Vranješ, J. Boronat, J. Casulleras, C. Cazorla, Phys. Rev. Lett. 95, 145302 (2005) CrossRefADSGoogle Scholar
  23. 23.
    G.D. Mahan, H. Shin, Phys. Rev. B 74, 214502 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departament de Física i Enginyeria NuclearUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations