Journal of Low Temperature Physics

, Volume 163, Issue 1–2, pp 78–85 | Cite as

Decay Characteristics of Levitation Force of YBCO Bulk Exposed to AC Magnetic Field above NdFeB Guideway



The superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the nonuniformity of the magnetic field along the movement direction above the NdFeB guideway is inevitable due to the assembly error and inhomogeneity of the material property of the NdFeB magnet. So it is required to study the characteristics of levitation force of the bulks affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we will study the characteristics of the levitation force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet is used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experimental results, it has found that the levitation force is decreasing with the application of the AC external magnetic field, and the decay increasing with the amplitude of the applied magnetic field and is almost independent of the frequency.


HTS bulk AC magnetic field Levitation force relaxation NdFeB guideway Maglev vehicle system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Hull, Supercond. Sci. Technol. 13, R-1 (2000) ADSCrossRefGoogle Scholar
  2. 2.
    F.C. Moon, Superconducting Levitation (Wiley, New York, 1994) Google Scholar
  3. 3.
    L. Shultz, O. de Haas, P. Verges, C. Beyer, S. Rohlig, H. Olisen, L. Kuhn, D. Berger, U. Noteboom, U. Funk, IEEE Trans. Appl. Supercond. 15, 2301–2305 (2005) CrossRefGoogle Scholar
  4. 4.
    P.T. Putman, Y.X. Zhou, H. Fang, A. Klawitter, K. Salama, Supercond. Sci. Technol. 18, S6–S9 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    W. Jiasu, W. Suyu, Z. Youwen, H. Haiyu et al., Physica C 378–381, 809–814 (2002) Google Scholar
  6. 6.
    M. Liu, S. Wang, J. Wang, G. Ma, J. Supercond. Nov. Magn. 21, 431–435 (2008) CrossRefGoogle Scholar
  7. 7.
    S.Y. Wang, J.S. Wang, Z.Y. Ren et al., Physica C 386, 531–535 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    Y. Tachi, N. Uemura, Y. Iwasa et al., Physica C 357–360, 771 (2001) CrossRefGoogle Scholar
  9. 9.
    H.H. Song et al., J. Supercond. Sci. Technol. 18, S95–S98 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    T. Ohyama, H. Shimizu et al., IEEE Trans. Appl. Supercond. 11, 1988–1991 (2001) CrossRefGoogle Scholar
  11. 11.
    K. Takase, S. Shindo, K. Demachi et al., Mater. Process. Technol. 108, 152 (2001) CrossRefGoogle Scholar
  12. 12.
    B.M. Smolyak, G.V. Ermakov, L.I. Chubraeva, Supercond. Sci. Technol. 20, 406 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    L. Zhang, S. Wang, J. Wang et al., Physica C 467, 96–100 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    L. Zhang, J. Wang, S. Wang et al., Physica C 467, 27–30 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    S.Y. Wang, J.S. Wang, C.Y. Deng, IEEE Trans. Appl. Supercond. 17 (2007) Google Scholar
  16. 16.
    M. Liu et al., J. Low Temp. Phys. 155, 169–176 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    Y.S. Tseng, C.H. Chiang, W.C. Chan, Physica C 411, 332–334 (2004) CrossRefGoogle Scholar
  18. 18.
    C.P. Bean, Rev. Mod. Phys. 36, 31–39 (1964) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Minxian Liu
    • 1
  • Yiyun Lu
    • 2
  • Suyu Wang
    • 3
  • Guangtong Ma
    • 3
  1. 1.School of Computer Science and TechnologySouthwest University of Science and TechnologyMianyangP.R. China
  2. 2.Department of Electrical Engineering and AutomationLuoyang Institute of Science and TechnologyLuoyangP.R. China
  3. 3.Applied Superconductivity LaboratorySouthwest Jiaotong UniversityChengduP.R. China

Personalised recommendations