Advertisement

Journal of Low Temperature Physics

, Volume 162, Issue 1–2, pp 62–71 | Cite as

Magnet Guideways for Superconducting Maglevs: Comparison Between Halbach-Type and Conventional Arrangements of Permanent Magnets

  • Nuria Del-Valle
  • Alvaro Sanchez
  • Carles Navau
  • Du-Xing Chen
Article

Abstract

The characteristics of the permanent magnets composing the guideway in superconducting magnetic levitation devices are very important for their performance in terms of levitation force and stability. From a model based on minimizing the magnetic energy in the superconductor and considering realistic parameters of actual maglev devices, we calculate the levitation and guidance forces and stability arising from both conventional arrangements and recently proposed Halbach-like arrangements. When a comparison is carefully made under similar conditions, we conclude that not always complicated arrangements based on Halbach arrays bring significant improvements with respect to some simpler arrangements that also provide large force. These results may help improving the design of actual maglev devices.

Keywords

Levitation Maglev Bearing Halbach arrays Permanent magnet guideway 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Wang, S. Wang, Y. Zeng, H. Huang, F. Luo, Z. Xu, Q. Tang, G. Lin, C. Zhang, Z. Ren, G. Zhao, D. Zhu, S. Wang, H. Jiang, M. Zhu, C. Deng, P. Hu, C. Li, F. Liu, J. Lian, X. Wang, L. Wang, X. Shen, X. Dong, Physica C 378, 809 (2002) CrossRefADSGoogle Scholar
  2. 2.
    L. Schultz, O. de Haas, P. Verges, C. Beyer, S. Rohlig, H. Olsen, L. Kuhn, D. Berger, U. Noteboom, U. Funk, IEEE Trans. Appl. Supercond. 15, 2301 (2005) CrossRefGoogle Scholar
  3. 3.
    R.M. Stephan, R. Nicolsky, M.A. Neves, A.C. Ferreira, R. de Andrade Jr., M.A. Cruz Moreira, M.A. Rosario, O.J. Machado, Physica C 408–410, 932 (2004) CrossRefGoogle Scholar
  4. 4.
    L. Schultz, G. Krabbes, G. Fuchs, W. Pfeiffer, K.H. Muller, Z. Met.kd. 93, 1057 (2002) Google Scholar
  5. 5.
    R.M. Stephan, R. de Andrade, G.C. dos Santos, M.A. Neves, R. Nicolsky, Physica C 386, 490 (2003) CrossRefADSGoogle Scholar
  6. 6.
    W. Yang, M. Qiu, Y. Liu, Z. Wen, Y. Duan, X. Chen, Supercond. Sci. Technol. 20, 281 (2007) MATHCrossRefADSGoogle Scholar
  7. 7.
    R.M. Stephan, R. Nicolsky, M.A. Neves, A.C. Ferreira, R. de Andrade Jr., M.A. Cruz Moreira, M.A. Rosário, O.J. Machado, Physica C 408–410, 932 (2004) CrossRefGoogle Scholar
  8. 8.
    M. Qiu, W.J. Yang, Z. Wen, L.Z. Lin, G.H. Yang, Y. Liu, IEEE Trans. Appl. Supercond. 16, 1120 (2006) CrossRefGoogle Scholar
  9. 9.
    L. Zhang, J. Wang, Q. He, J. Zhang, S. Wang, Physica C 459, 33 (2007) CrossRefADSGoogle Scholar
  10. 10.
    H. Jing, J. Wang, S. Wang, L. Wang, L. Liu, J. Zheng, G. Ma, Y. Zhang, J. Li, Physica C 463–465, 426 (2007) CrossRefGoogle Scholar
  11. 11.
    W. Liu, S.Y. Wang, H. Jing, J. Zheng, M. Jiang, J.S. Wang, Physica C 468, 974 (2008) CrossRefADSGoogle Scholar
  12. 12.
    G.T. Ma, Q.X. Lin, J.S. Wang, S.Y. Wang, Z.G. Deng, Y.Y. Lu, M.X. Liu, J. Zheng, Supercond. Sci. Technol. 21, 065020 (2008) CrossRefADSGoogle Scholar
  13. 13.
    Z. Deng, J. Wang, J. Zheng, H. Jing, Y. Lu, G. Ma, L. Liu, W. Liu, Y. Zhang, S. Wang, Supercond. Sci. Technol. 21, 115018 (2008) CrossRefADSGoogle Scholar
  14. 14.
    A. Sanchez, N. Del-Valle, E. Pardo, D.-X. Chen, C. Navau, J. Appl. Phys. 99, 113904 (2006) CrossRefADSGoogle Scholar
  15. 15.
    N. Del-Valle, A. Sanchez, E. Pardo, D.-X. Chen, C. Navau, Appl. Phys. Lett. 90, 042503 (2007) CrossRefADSGoogle Scholar
  16. 16.
    N. Del-Valle, A. Sanchez, E. Pardo, D.-X. Chen, C. Navau, Appl. Phys. Lett. 91, 112507 (2007) CrossRefADSGoogle Scholar
  17. 17.
    N. Del-Valle, A. Sanchez, C. Navau, D.-X. Chen, Supercond. Sci. Technol. 21, 125008 (2008) CrossRefADSGoogle Scholar
  18. 18.
    K. Halbach, Nucl. Instrum. Methods 169, 1–10 (1980) CrossRefADSGoogle Scholar
  19. 19.
    K. Halbach, J. Appl. Phys. 57, 3605 (1985) CrossRefADSGoogle Scholar
  20. 20.
    Z.Q. Zhu, D. Howe, Proc. IEE Electr. Power Appl. 148, 299 (2001) CrossRefGoogle Scholar
  21. 21.
    K. Nagashima, T. Otani, M. Murakami, Physica C 328, 137 (1999) CrossRefADSGoogle Scholar
  22. 22.
    G.G. Sotelo, A.C. Ferreira, R. de Andrade Jr., IEEE Trans. Appl. Supercond. 15, 2253 (2005) CrossRefGoogle Scholar
  23. 23.
    A.M. Campbell, Supercond. Sci. Technol. 15, 759 (2002) CrossRefADSGoogle Scholar
  24. 24.
    N. Del-Valle, A. Sanchez, C. Navau, D.-X. Chen, Appl. Phys. Lett. 92, 042505 (2008) CrossRefADSGoogle Scholar
  25. 25.
    A. Sanchez, N. Del-Valle, C. Navau, D.-X. Chen, J. Appl. Phys. 105, 023906 (2009) CrossRefADSGoogle Scholar
  26. 26.
    J. Wang, S. Wang, C. Deng, J. Zheng, H. Song, Q. He, Y. Zeng, Z. Deng, J. Li, G. Ma, H. Jing, Y. Huang, J. Zhang, Y. Lu, L. Liu, L. Wang, J. Zhang, L. Zhang, M. Liu, Y. Qin, Y. Zhang, IEEE Trans. Appl. Supercond. 17, 2091 (2007) CrossRefADSGoogle Scholar
  27. 27.
    C.P. Bean, Phys. Rev. Lett. 8, 250 (1962) MATHCrossRefADSGoogle Scholar
  28. 28.
    N. Del-Valle, A. Sanchez, C. Navau, D.-X. Chen, IEEE Trans. Appl. Supercond. 19, 2070 (2009) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nuria Del-Valle
    • 1
  • Alvaro Sanchez
    • 1
  • Carles Navau
    • 1
  • Du-Xing Chen
    • 1
    • 2
  1. 1.Grup d’Electromagnetisme, Departament de FísicaUniversitat Autònoma de BarcelonaBellaterra, BarcelonaSpain
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations