Advertisement

Journal of Low Temperature Physics

, Volume 162, Issue 1–2, pp 72–79 | Cite as

Improved Maglev Performance of Bulk High-Temperature Superconductors with a Re-magnetization Process After Zero-Field Cooling

  • Z. Deng
  • J. Zheng
  • Q. Lin
  • J. Li
  • Y. Zhang
  • S. Wang
  • J. Wang
Article

Abstract

Zero-field cooling (ZFC) and field cooling (FC) are the two most popular activation ways of the bulk high-temperature superconductors (HTSCs). The former can bring a big levitation force but a poor stability, while the latter can bring a good stability but a reduced levitation force due to the trapped flux. Under this rule, it is very difficult to improve the levitation force (load capability) and guidance force (stability) at the same time with the given bulk HTSCs and applied field in practice. In the paper, based on the re-magnetization ability of bulk HTSCs, the maglev performance of bulk HTSCs with a re-magnetization process after ZFC was experimentally investigated above a permanent magnetic guideway (PMG). The bulk HTSCs were firstly cooled down at a far distance above the PMG, but before moving to the working height, an additional process was introduced to descend the bulks to a lower height to magnetize again by the PMG field. Experimental results show that, at certain re-magnetization height above PMG, the levitation force and guidance force could be improved simultaneously compared with the results of normal FC cases, which is different from the present performance improvement with the sacrifice of one important force. This result presents a possible working way for the levitation applications of bulk HTSCs by employing a re-magnetization process after ZFC, and is also useful to optimize the performance of high-temperature superconducting Maglev vehicle systems.

Keywords

High-temperature superconductors (HTSCs) Zero-field cooling (ZFC) Re-magnetization Levitation performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.C. Moon, Superconducting Levitation (Wiley, New York, 1994) Google Scholar
  2. 2.
    G. Krabbes, G. Fuchs, W.-R. Canders, H. May, R. Palka, High Temperature Superconductor Bulk Materials: Fundamentals – Processing – Properties Control – Application Aspects (Wiley/VCH, Weinheim, 2006) CrossRefGoogle Scholar
  3. 3.
    J.R. Hull, Supercond. Sci. Technol. 13, R1 (2000) CrossRefADSGoogle Scholar
  4. 4.
    K.B. Ma, Y.V. Postrekhin, W.K. Chu, Rev. Sci. Instrum. 74, 4989 (2003) CrossRefADSGoogle Scholar
  5. 5.
    M. Murakami, Int. J. Appl. Ceram. Technol. 4, 225 (2007) CrossRefGoogle Scholar
  6. 6.
    U. Floegel-Delor, R. Rothfeld, D. Wippich et al., IEEE Trans. Appl. Supercond. 17, 2142 (2007) CrossRefADSGoogle Scholar
  7. 7.
    H. Walter, J. Bock, C. Frohne et al., J. Phys.: Conf. Ser. 43, 995 (2006) CrossRefADSGoogle Scholar
  8. 8.
    M. Strasik, P.E. Johnson, A.C. Day et al., IEEE Trans. Appl. Supercond. 17, 2133 (2007) CrossRefADSGoogle Scholar
  9. 9.
    F.N. Werfel, U. Floegel-Delor, T. Riedel et al., J. Phys. Conf. Ser. 97, 012206 (2008) CrossRefADSGoogle Scholar
  10. 10.
    N. Koshizuka, Physica C 445–448, 1103 (2006) CrossRefGoogle Scholar
  11. 11.
    J. Wang, S. Wang, Y. Zeng et al., Physica C 378-381, 809 (2002) CrossRefADSGoogle Scholar
  12. 12.
    L. Schultz, O. de Haas, P. Verges et al., IEEE Trans. Appl. Supercond. 15, 2301 (2005) CrossRefGoogle Scholar
  13. 13.
    L.K. Kovalev, K.V. Ilushin, S.M.-A. Koneev et al., IEEE Trans. Appl. Supercond. 9, 1261 (1999) CrossRefGoogle Scholar
  14. 14.
    N. Del-Valle, A. Sanchez, E. Pardo, C. Navau, D.-X. Chen, Appl. Phys. Lett. 91, 112507 (2007) CrossRefADSGoogle Scholar
  15. 15.
    W.M. Yang, L. Zhou, Y. Feng et al., Supercond. Sci. Technol. 15, 1410 (2002) CrossRefADSGoogle Scholar
  16. 16.
    N. Del-Valle, A. Sanchez, C. Navau, D.-X. Chen, Supercond. Sci. Technol. 21, 125008 (2008) CrossRefADSGoogle Scholar
  17. 17.
    W. Hennig, D. Parks, R. Weinstein, R.-P. Sawh, Appl. Phys. Lett. 72, 3059 (1998) CrossRefADSGoogle Scholar
  18. 18.
    P. Vanderbemden, Z. Hong, T.A. Coombs et al., Supercond. Sci. Technol. 20, S174 (2007) CrossRefADSGoogle Scholar
  19. 19.
    T.A. Coombs, Z. Hong, X. Zhu, G. Krabbes, Supercond. Sci. Technol. 21, 034001 (2008) CrossRefADSGoogle Scholar
  20. 20.
    H. Jing, J. Wang, S. Wang et al., Physica C 463-465, 426 (2007) CrossRefADSGoogle Scholar
  21. 21.
    Z. Deng, J. Wang, J. Zheng et al., Supercond. Sci. Technol. 21, 115018 (2008) CrossRefADSGoogle Scholar
  22. 22.
    J. Wang, S. Wang, Z. Ren, M. Zhu, H. Jiang, Q. Tang, IEEE Trans. Appl. Supercond. 11, 1801 (2001) CrossRefGoogle Scholar
  23. 23.
    H. Song, O. de Haas, C. Beyer, G. Krabbes, P. Verges, L. Schultz, Appl. Phys. Lett. 86, 192506 (2005) CrossRefADSGoogle Scholar
  24. 24.
    E.H. Brandt, Appl. Phys. Lett. 53, 1554 (1988) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Z. Deng
    • 1
  • J. Zheng
    • 1
    • 2
    • 3
  • Q. Lin
    • 1
  • J. Li
    • 1
  • Y. Zhang
    • 1
    • 2
    • 3
  • S. Wang
    • 1
    • 3
  • J. Wang
    • 1
    • 3
  1. 1.Applied Superconductivity LaboratorySouthwest Jiaotong UniversityChengduP.R. China
  2. 2.Traction Power State Key LaboratorySouthwest Jiaotong UniversityChengduP.R. China
  3. 3.National Laboratory of Rail TransitChengduP.R. China

Personalised recommendations