Skip to main content
Log in

Improved Maglev Performance of Bulk High-Temperature Superconductors with a Re-magnetization Process After Zero-Field Cooling

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Zero-field cooling (ZFC) and field cooling (FC) are the two most popular activation ways of the bulk high-temperature superconductors (HTSCs). The former can bring a big levitation force but a poor stability, while the latter can bring a good stability but a reduced levitation force due to the trapped flux. Under this rule, it is very difficult to improve the levitation force (load capability) and guidance force (stability) at the same time with the given bulk HTSCs and applied field in practice. In the paper, based on the re-magnetization ability of bulk HTSCs, the maglev performance of bulk HTSCs with a re-magnetization process after ZFC was experimentally investigated above a permanent magnetic guideway (PMG). The bulk HTSCs were firstly cooled down at a far distance above the PMG, but before moving to the working height, an additional process was introduced to descend the bulks to a lower height to magnetize again by the PMG field. Experimental results show that, at certain re-magnetization height above PMG, the levitation force and guidance force could be improved simultaneously compared with the results of normal FC cases, which is different from the present performance improvement with the sacrifice of one important force. This result presents a possible working way for the levitation applications of bulk HTSCs by employing a re-magnetization process after ZFC, and is also useful to optimize the performance of high-temperature superconducting Maglev vehicle systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.C. Moon, Superconducting Levitation (Wiley, New York, 1994)

    Google Scholar 

  2. G. Krabbes, G. Fuchs, W.-R. Canders, H. May, R. Palka, High Temperature Superconductor Bulk Materials: Fundamentals – Processing – Properties Control – Application Aspects (Wiley/VCH, Weinheim, 2006)

    Book  Google Scholar 

  3. J.R. Hull, Supercond. Sci. Technol. 13, R1 (2000)

    Article  ADS  Google Scholar 

  4. K.B. Ma, Y.V. Postrekhin, W.K. Chu, Rev. Sci. Instrum. 74, 4989 (2003)

    Article  ADS  Google Scholar 

  5. M. Murakami, Int. J. Appl. Ceram. Technol. 4, 225 (2007)

    Article  Google Scholar 

  6. U. Floegel-Delor, R. Rothfeld, D. Wippich et al., IEEE Trans. Appl. Supercond. 17, 2142 (2007)

    Article  ADS  Google Scholar 

  7. H. Walter, J. Bock, C. Frohne et al., J. Phys.: Conf. Ser. 43, 995 (2006)

    Article  ADS  Google Scholar 

  8. M. Strasik, P.E. Johnson, A.C. Day et al., IEEE Trans. Appl. Supercond. 17, 2133 (2007)

    Article  ADS  Google Scholar 

  9. F.N. Werfel, U. Floegel-Delor, T. Riedel et al., J. Phys. Conf. Ser. 97, 012206 (2008)

    Article  ADS  Google Scholar 

  10. N. Koshizuka, Physica C 445–448, 1103 (2006)

    Article  Google Scholar 

  11. J. Wang, S. Wang, Y. Zeng et al., Physica C 378-381, 809 (2002)

    Article  ADS  Google Scholar 

  12. L. Schultz, O. de Haas, P. Verges et al., IEEE Trans. Appl. Supercond. 15, 2301 (2005)

    Article  Google Scholar 

  13. L.K. Kovalev, K.V. Ilushin, S.M.-A. Koneev et al., IEEE Trans. Appl. Supercond. 9, 1261 (1999)

    Article  Google Scholar 

  14. N. Del-Valle, A. Sanchez, E. Pardo, C. Navau, D.-X. Chen, Appl. Phys. Lett. 91, 112507 (2007)

    Article  ADS  Google Scholar 

  15. W.M. Yang, L. Zhou, Y. Feng et al., Supercond. Sci. Technol. 15, 1410 (2002)

    Article  ADS  Google Scholar 

  16. N. Del-Valle, A. Sanchez, C. Navau, D.-X. Chen, Supercond. Sci. Technol. 21, 125008 (2008)

    Article  ADS  Google Scholar 

  17. W. Hennig, D. Parks, R. Weinstein, R.-P. Sawh, Appl. Phys. Lett. 72, 3059 (1998)

    Article  ADS  Google Scholar 

  18. P. Vanderbemden, Z. Hong, T.A. Coombs et al., Supercond. Sci. Technol. 20, S174 (2007)

    Article  ADS  Google Scholar 

  19. T.A. Coombs, Z. Hong, X. Zhu, G. Krabbes, Supercond. Sci. Technol. 21, 034001 (2008)

    Article  ADS  Google Scholar 

  20. H. Jing, J. Wang, S. Wang et al., Physica C 463-465, 426 (2007)

    Article  ADS  Google Scholar 

  21. Z. Deng, J. Wang, J. Zheng et al., Supercond. Sci. Technol. 21, 115018 (2008)

    Article  ADS  Google Scholar 

  22. J. Wang, S. Wang, Z. Ren, M. Zhu, H. Jiang, Q. Tang, IEEE Trans. Appl. Supercond. 11, 1801 (2001)

    Article  Google Scholar 

  23. H. Song, O. de Haas, C. Beyer, G. Krabbes, P. Verges, L. Schultz, Appl. Phys. Lett. 86, 192506 (2005)

    Article  ADS  Google Scholar 

  24. E.H. Brandt, Appl. Phys. Lett. 53, 1554 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Z., Zheng, J., Lin, Q. et al. Improved Maglev Performance of Bulk High-Temperature Superconductors with a Re-magnetization Process After Zero-Field Cooling. J Low Temp Phys 162, 72–79 (2011). https://doi.org/10.1007/s10909-010-0222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-010-0222-3

Keywords

Navigation