Advertisement

Novel “Vibrating Wire Like” NEMS and MEMS Structures for Low Temperature Physics

  • E. Collin
  • J. Kofler
  • J.-S. Heron
  • O. Bourgeois
  • Yu. M. Bunkov
  • H. Godfrin
Article

Abstract

Using microfabrication techniques, it has become possible to make mechanical devices with dimensions in the micro and even in the nano scale domain. Allied to low temperature techniques, these systems have opened a new path in physics with the ultimate goal of reaching the quantum nature of a macroscopic mechanical degree of freedom (LaHaye et al. in Science 304:74, 2004). Within this field, materials research plays a significant role. It ranges from the fundamental nature of the dissipation mechanisms at the lowest temperatures, to the non-linear behavior of mechanical oscillators. We present experimental results on cantilever structures mimicking the well known “vibrating wire” technique, which present many advantages as far as the mechanical studies are concerned: the measurement is phase-resolved, they can be magnetomotive and electrostatically driven, and support extremely large displacements. Moreover, these devices can be advantageously used to study quantum fluids, making the link with conventional low temperature physics.

Keywords

Micromechanics Nanomechanics Dissipation process Quantum fluid probes 

PACS

62.20.Dc 62.40.+i 81.40.Jj 47.45.-n 47.45.Ab 

References

  1. 1.
    M.D. LaHaye, O. Buu, B. Camarota, K.C. Schwab, Science 304, 74 (2004) CrossRefADSGoogle Scholar
  2. 2.
    M.A. Black, H.E. Hall, K. Thomson, in Proc. of the 10th Int. Conf. on Low Temperature Physics (1966), p. 174 Google Scholar
  3. 3.
    M.A. Black, H.E. Hall, K. Thomson, J. Phys. C: Solid State Phys. 4, 129 (1971) CrossRefADSGoogle Scholar
  4. 4.
    A.M. Guénault, V. Keith, C.J. Kennedy, S.G. Mussett, G.R. Pickett, J. Low Temp. Phys. 62, 511 (1986) CrossRefADSGoogle Scholar
  5. 5.
    C. Bäuerle, Yu.M. Bunkov, S.N. Fisher, H. Godfrin, Phys. Rev. B 57, 14381 (1998) CrossRefADSGoogle Scholar
  6. 6.
    C.B. Winkelmann, E. Collin, Yu.M. Bunkov, H. Godfrin, J. Low Temp. Phys. 135, 3 (2004) CrossRefADSGoogle Scholar
  7. 7.
    C.B. Winkelmann, J. Elbs, Yu.M. Bunkov, E. Collin, H. Godfrin, M. Krusius, Nucl. Instrum. Methods Phys. Res. A 574, 264 (2007) CrossRefADSGoogle Scholar
  8. 8.
    R. König, P. Esquinazi, F. Pobell, J. Low Temp. Phys. 90, 55 (1993) CrossRefADSGoogle Scholar
  9. 9.
    S. Triqueneaux, E. Collin, D.J. Cousins, T. Fournier, C. Bäuerle, Yu.M. Bunkov, H. Godfrin, Physica B 284, 2141 (2000) CrossRefADSGoogle Scholar
  10. 10.
    E. Collin, L. Filleau, T. Fournier, Yu.M. Bunkov, H. Godfrin, J. Low Temp. Phys. 150(5–6), 739 (2008) CrossRefADSGoogle Scholar
  11. 11.
    D.W. Carr, S. Evoy, L. Sekaric, H.G. Craighead, J.M. Parpia, Appl. Phys. Lett. 75, 920 (1999) CrossRefADSGoogle Scholar
  12. 12.
    G. Zolfagharkhani, A. Gaidarzhy, S.-B. Shim, R.L. Badzey, P. Mohanty, Phys. Rev. B 72, 224101 (2005) CrossRefADSGoogle Scholar
  13. 13.
    M. Godin, V. Tabard-Cossa, P. Grütter, P. Williams, Appl. Phys. Lett. 79, 551 (2001) CrossRefADSGoogle Scholar
  14. 14.
    A.W. McFarland, M.A. Poggi, M.J. Doyle, L.A. Bottomley, J.S. Colton, Appl. Phys. Lett. 87, 053505 (2005) CrossRefADSGoogle Scholar
  15. 15.
    J.-S. Heron, T. Fournier, N. Mingo, O. Bourgeois, Nano Lett. 9, 1861 (2009) CrossRefADSGoogle Scholar
  16. 16.
    R.E. Mihailovich, J.M. Parpia, Phys. Rev. Lett. 68, 3052 (1992) CrossRefADSGoogle Scholar
  17. 17.
    P. Mohanty, D.A. Harrington, K.L. Ekinci, Y.T. Yang, M.J. Murphy, M.L. Roukes, Phys. Rev. B 66, 085416 (2002) CrossRefADSGoogle Scholar
  18. 18.
    C. Seoánez, F. Guinea, A.H. Castro Neto, Phys. Rev. B 77, 125107 (2008) CrossRefADSGoogle Scholar
  19. 19.
    R. Lifshitz, M.L. Roukes, Phys. Rev. B 61, 5600 (2000) CrossRefADSGoogle Scholar
  20. 20.
    M.A. Haque, M.T.A. Saif, Proc. Natl. Acad. Sci. USA 101, 6335 (2005) CrossRefADSGoogle Scholar
  21. 21.
    A.D. Fefferman, R.O. Pohl, A.T. Zehnder, J.M. Parpia, Phys. Rev. Lett. 100, 195501 (2008) CrossRefADSGoogle Scholar
  22. 22.
    J. Classen, T. Burkert, C. Enss, S. Hunklinger, Phys. Rev. Lett. 84, 2176 (2000) CrossRefADSGoogle Scholar
  23. 23.
    L.D. Landau, E.M. Lifshitz, Mechanics, 3rd edn. (Elsevier Science, Amsterdam, 1976) Google Scholar
  24. 24.
    K.L. Ekinci, M.L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005) CrossRefADSGoogle Scholar
  25. 25.
    H.W.Ch. Postma, I. Kozinsky, A. Husain, M.L. Roukes, Appl. Phys. Lett. 86, 223105 (2005) CrossRefADSGoogle Scholar
  26. 26.
    J. Kober, A. Gupta, P. Esquinazi, H.F. Braun, Phys. Rev. Lett. 66, 2507 (1991) CrossRefADSGoogle Scholar
  27. 27.
    E. Collin, Y. Bilbao-Zarraga, Yu.M. Bunkov, H. Godfrin (eds.) Poster Session on Superconductor Coated Electro-Mechanical Systems for Low and Ultra-Low Temperature Physics. ULT 2008 Conference Frontiers of Low Temperature Physics, Royal Holloway University of London, England, 14–17 August 2008 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • E. Collin
    • 1
  • J. Kofler
    • 1
  • J.-S. Heron
    • 1
  • O. Bourgeois
    • 1
  • Yu. M. Bunkov
    • 1
  • H. Godfrin
    • 1
  1. 1.Institut NéelCNRS et Université Joseph FourierGrenoble Cedex 9France

Personalised recommendations