Advertisement

Development of Micro-SQUID Magnetometers for Investigation of Quantum Tunneling of Magnetization in Nanometer-Size Magnetic Materials

  • A. Yamaguchi
  • K. Takeda
  • T. Matsumoto
  • G. Motoyama
  • H. Kashiwaya
  • S. Kuriki
  • S. Kashiwaya
  • S. Ohkoshi
  • A. Sumiyama
Article

Abstract

We report development of micro superconducting quantum interference device (μ-SQUID) magnetometers for investigation of quantum tunneling of magnetization in μm- and nm-size magnetic materials. Both high- and low-temperature superconductor (HTS and LTS) based μ-SQUID magnetometers were fabricated and a three dimensional magnetic coil system was constructed for this purpose. The HTS-μ-SQUIDs with a hole of 4×9 μm2 work at temperatures between 4.2 and 70 K and in magnetic fields up to 120 mT. A magnetization measurement of a ferrimagnetic micro-crystal was carried out at 35 K with an accuracy of 10−9 emu. The development of LTS-μ-SQUIDs has been started in order to study much smaller magnetic materials in a mK temperature range. We present a preliminary result on the LTS-μ-SQUID with a hole of 1×1 μm2. The critical current as a function of applied magnetic field shows the SQUID modulation at 4.2 K and up to 30 mT. The heat release associated with the present measurement method is estimated to be on the order of several microwatts.

Keywords

Macroscopic quantum tunneling in magnetization Low temperature technique Micro SQUID magnetometer 

PACS

75.50.Xx 5.50.Tt 

References

  1. 1.
    L. Gunther, B. Barbara, Quantum Tunneling of Magnetiazation—QTM’94 (Kluwer Academic, Amsterdam, 1994) Google Scholar
  2. 2.
    W. Wernsdorfer, C.R. Chim. 11, 1086 (2008) Google Scholar
  3. 3.
    W. Wernsdorfer, K. Hasselbach, A. Benoit, W. Wernsdorfer, B. Barbara, D. Mailly, J. Tuaillon, J.P. Perez, V. Dupuis, J.P. Dupin, G. Guiraud, A. Perex, J. Appl. Phys. 78, 7192 (1995) CrossRefADSGoogle Scholar
  4. 4.
    V. Bouchiat, Supercond. Sci. Technol. 22, 064002 (2009) CrossRefADSGoogle Scholar
  5. 5.
    K. Takeda, H. Mori, A. Yamaguchi, H. Ishimoto, T. Nakamura, S. Kuriki, T. Hozumi, S. Ohkoshi, Rev. Sci. Instrum. 79, 033909 (2008) CrossRefADSGoogle Scholar
  6. 6.
    R. Gross, P. Chaudhari, M. Kawasaki, M.B. Ketchen, A. Gupta, Appl. Phys. Lett. 57, 727 (1990) CrossRefADSGoogle Scholar
  7. 7.
    B. Mayer, S. Schuster, A. Beck, L. Alff, R. Gross, Appl. Phys. Lett. 62, 783 (1993) CrossRefADSGoogle Scholar
  8. 8.
    Y. Song, S. Ohkoshi, Y. Arimoto, H. Seino, Y. Mizobe, K. Hashimoto, Inorg. Chem. 42, 1848 (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. Yamaguchi
    • 1
  • K. Takeda
    • 2
  • T. Matsumoto
    • 3
  • G. Motoyama
    • 1
  • H. Kashiwaya
    • 3
  • S. Kuriki
    • 4
  • S. Kashiwaya
    • 3
  • S. Ohkoshi
    • 2
  • A. Sumiyama
    • 1
  1. 1.Graduate School of Material ScienceUniversity of HyogoHyogoJapan
  2. 2.Department of ChemistryUniversity of TokyoTokyoJapan
  3. 3.Nanoelectronics Research Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  4. 4.Research Institute for Electronic ScienceHokkaido UniversitySapporoJapan

Personalised recommendations