Journal of Low Temperature Physics

, Volume 159, Issue 1–2, pp 138–142 | Cite as

Theory of Unusual Superconducting Phase Transitions in Heavy Fermion Metals at High Magnetic Fields



We present a non-perturbative theory of paramagnetically-driven superconducting (SC) phase transitions in heavy-fermion metals, which reliably determines their stable SC phases, treats properly the corresponding finite jumps of the order parameter, and can account for unusual features reported recently for this type of materials. It is found that for quasi-2D heavy-fermion metals, such as CeCoIn5, at high magnetic fields oriented perpendicular to the highly conducting planes, the effect of the Fulde-Ferrel (FF) modulation is too weak to prevent a direct first-order phase transition from the normal to the uniform SC state. For 3D heavy-fermion metals, such as URu2Si2, the FF modulation stabilizes, under a decreasing magnetic field, a non-uniform SC state via a second-order phase transition from the normal state. However, at a slightly lower field the modulated phase becomes unstable, transforming to a uniform SC state via a first-order transition.

Paramagnetically-limited superconductor Heavy-fermion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Settai et al., J. Phys.: Condens. Matter. 13, L627–634 (2001) CrossRefADSGoogle Scholar
  2. 2.
    H. Ohkuni et al., Philos. Mag. B 79, 1045 (1999) CrossRefADSGoogle Scholar
  3. 3.
    G. Sarma, J. Phys. Chem. Solids 24, 1029 (1963) CrossRefADSGoogle Scholar
  4. 4.
    K. Maki, T. Tsuneto, Prog. Theor. Phys. 31, 945 (1964) CrossRefADSGoogle Scholar
  5. 5.
    L.W. Gruenberg, L. Gunter, Phys. Rev. Lett. 16, 966 (1966) CrossRefADSGoogle Scholar
  6. 6.
    P. Fulde, R.A. Ferrell, Phys. Rev. 135, A550 (1964) CrossRefADSGoogle Scholar
  7. 7.
    A.I. Larkin, Yu.N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys. JETP 20, 762 (1965)] Google Scholar
  8. 8.
    T. Maniv, V. Zhuravlev, Phys. Rev. B 77, 134511 (2008) CrossRefADSGoogle Scholar
  9. 9.
    A. Bianchi et al., Phys. Rev. Lett. 89, 137002 (2002) CrossRefADSGoogle Scholar
  10. 10.
    A. Bianchi et al., Phys. Rev. Lett. 91, 187004 (2003) CrossRefADSGoogle Scholar
  11. 11.
    K. Kumagai et al., Phys. Rev. Lett. 97, 227002 (2006) CrossRefADSGoogle Scholar
  12. 12.
    X. Gratens et al., cond-mat/0608722
  13. 13.
    Y. Kasahara et al., Phys. Rev. Lett. 99, 116402 (2007) CrossRefADSGoogle Scholar
  14. 14.
    V. Zhuravlev, T. Maniv, Phys. Rev. B 80, 174520 (2009) CrossRefGoogle Scholar
  15. 15.
    R. Ikeda, Phys. Rev. B 76, 134504 (2007) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifaIsrael
  2. 2.Forschungszentrum Dresden-RossendorfHochfeld-Magnetlabor DresdenDresdenGermany

Personalised recommendations